poj 3469(最小割)

本文探讨了在双核CPU环境下如何通过合理分配任务模块来最小化执行成本和数据交换开销的问题。介绍了一个具体的算法实现案例,利用最小割算法进行优化求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dual Core CPU
Time Limit: 15000MS Memory Limit: 131072K
Total Submissions: 19250 Accepted: 8335
Case Time Limit: 5000MS

Description

As more and more computers are equipped with dual core CPU, SetagLilb, the Chief Technology Officer of TinySoft Corporation, decided to update their famous product - SWODNIW.

The routine consists of N modules, and each of them should run in a certain core. The costs for all the routines to execute on two cores has been estimated. Let's define them as Ai and Bi. Meanwhile, M pairs of modules need to do some data-exchange. If they are running on the same core, then the cost of this action can be ignored. Otherwise, some extra cost are needed. You should arrange wisely to minimize the total cost.

Input

There are two integers in the first line of input data, N and M (1 ≤ N ≤ 20000, 1 ≤ M ≤ 200000) .
The next N lines, each contains two integer, Ai and Bi.
In the following M lines, each contains three integers: abw. The meaning is that if module a and module b don't execute on the same core, you should pay extra w dollars for the data-exchange between them.

Output

Output only one integer, the minimum total cost.

Sample Input

3 1
1 10
2 10
10 3
2 3 1000

Sample Output

13

Source

POJ Monthly--2007.11.25, Zhou Dong


最小割建图。


#include<cstdio>
#include<map>
#include<queue>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<list>
#include<set>
#include<cmath>
using namespace std;
const int maxn = 2e4 + 5;
const int INF = 1e9;
const double eps = 1e-6;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> P;
#define fi first
#define se second

struct Edge {
  int from, to, cap, flow;
};

struct Dinic {
  int n, m, s, t;
  vector<Edge> edges;    // 边数的两倍
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  bool vis[maxn];        // BFS使用
  int d[maxn];           // 从起点到i的距离
  int cur[maxn];         // 当前弧指针

  void ClearAll(int n) {
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void ClearFlow() {
    for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
  }

  void AddEdge(int from, int to, int cap) {
    //cout << from << ' ' << to << ' ' << cap << endl;
    edges.push_back((Edge){from, to, cap, 0});
    edges.push_back((Edge){to, from, 0, 0});
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }

  bool BFS() {
    memset(vis, 0, sizeof(vis));
    queue<int> Q;
    Q.push(s);
    vis[s] = 1;
    d[s] = 0;
    while(!Q.empty()) {
      int x = Q.front(); Q.pop();
      for(int i = 0; i < G[x].size(); i++) {
        Edge& e = edges[G[x][i]];
        if(!vis[e.to] && e.cap > e.flow) {
          vis[e.to] = 1;
          d[e.to] = d[x] + 1;
          Q.push(e.to);
        }
      }
    }
    return vis[t];
  }

  int DFS(int x, int a) {
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int& i = cur[x]; i < G[x].size(); i++) {
      Edge& e = edges[G[x][i]];
      if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
        e.flow += f;
        edges[G[x][i]^1].flow -= f;
        flow += f;
        a -= f;
        if(a == 0) break;
      }
    }
    return flow;
  }

  int Maxflow(int s, int t) {
    this->s = s; this->t = t;
    int flow = 0;
    while(BFS()) {
      memset(cur, 0, sizeof(cur));
      flow += DFS(s, INF);
    }
    return flow;
  }
};

Dinic g;

int main(){
    int n, m;
    while(scanf("%d%d", &n, &m) != EOF){
        g.ClearAll(n+5);
        int source = 0, sink = n+1;
        for(int i = 1;i <= n;i++){
            int a, b;
            scanf("%d%d", &a, &b);
            g.AddEdge(source, i, a);
            g.AddEdge(i, sink, b);
        }
        while(m--){
            int a, b, w;
            scanf("%d%d%d", &a, &b, &w);
            g.AddEdge(a, b, w);
            g.AddEdge(b, a, w);
        }
        cout << g.Maxflow(source, sink) << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值