【动态规划】Formula 1

Background
Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic games of 20**,
it is well-known, that the city will conduct one of the Formula 1 events. Surely, for such an important
thing a new race circuit should be built as well as hotels, restaurants, international airport -
everything for Formula 1 fans, who will flood the city soon. But when all the hotels and a half of
the restaurants were built, it appeared, that at the site for the future circuit a lot of gophers
lived in their holes. Since we like animals very much, ecologists will never allow to build the race
circuit over the holes. So now the mayor is sitting sadly in his office and looking at the map of the
circuit with all the holes plotted on it.

Problem
Who will be smart enough to draw a plan of the circuit and keep the city from inevitable disgrace? Of
course, only true professionals - battle-hardened programmers from the first team of local technical
university!.. But our heroes were not looking for easy life and set much more difficult problem:
"Certainly, our mayor will be glad, if we find how many ways of building the circuit are there!" -
they said.
It should be said, that the circuit in Vologda is going to be rather simple. It will be a rectangle
N*M cells in size with a single circuit segment built through each cell. Each segment should be
parallel to one of rectangle's sides, so only right-angled bends may be on the circuit. At the
picture below two samples are given for N = M = 4 (gray squares mean gopher holes, and the bold
black line means the race circuit). There are no other ways to build the circuit here.
Problem illustration

Input
The first line contains the integer numbers N and M (2 ≤ N, M ≤ 12). Each of the next N lines
contains M characters, which are the corresponding cells of the rectangle. Character "." (full
stop) means a cell, where a segment of the race circuit should be built, and character "*"
(asterisk) - a cell, where a gopher hole is located.

Output
You should output the desired number of ways. It is guaranteed, that it does not exceed 263-1.

Sample Input 1:
4 4
**..
....
....
....

Sample Output 1:
2

Sample Input 2:
4 4
....
....
....
....

Sample Output 2:
6


此题考察基于连通性的状态压缩型动态规划。

用括号表示法,具体细节见程序注释。

Accode:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>

typedef long long int64;
const char fi[] = "ural1519.in";
const char fo[] = "ural1519.out";
const int maxN = 20;
const int HOMD = 0xffff;
const int cntSTATUS = 100000;

struct Node
{
    int S, ID;
    Node *next;
};

Node tmp[cntSTATUS];
Node *Hash[HOMD + 1];
int64 f[2][cntSTATUS];
int status[2][cntSTATUS];
int cnt[2];
bool mp[maxN][maxN];
int n, m, pst, ths = 1;

void init_file()
{
    freopen(fi, "r", stdin);
    freopen(fo, "w", stdout);
    return;
}

void readdata()
{
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; ++i)
    {
        scanf("\n");
        for (int j = 0; j < m; ++j)
            mp[i][j] = (getchar() == '.');
    }
    return;
}

void Clear()
{
    cnt[ths] = 0;
    memset(Hash, 0, sizeof(Hash));
    return;
}

int get_ID(const int S)
{
    unsigned h = S & HOMD;
    for (Node *p = Hash[h]; p; p = p -> next)
        if (p -> S == S) return p -> ID;
    int ID = cnt[ths];
    tmp[ID].S = S;
    tmp[ID].ID = ID;
    tmp[ID].next = Hash[h];
    Hash[h] = &tmp[ID];
    f[ths][ID] = 0;
    status[ths][ID] = S;
    return cnt[ths]++;
}

int get_brac(int S, int pos, int delta)
{
    int tmp = 0;
    for (int t = pos; t >= 0
    && t <= (m << 1); t += delta)
    {
        int Now = (S >> t) & 3;
        if (Now == 1) ++tmp;
        if (Now == 2) --tmp;
        if (!tmp) return t;
    }
}

void work()
{
    Clear();
    f[ths][get_ID(0)] = 1;
    for (int i = 0; i < n; ++i)
    for (int j = 0; j < m; ++j)
    {
        std::swap(pst, ths);
        Clear();
        int p = (m - j) << 1;
        int q = p - 2;
        for (int k = 0; k < cnt[pst]; ++k)
        {
            int64 val = f[pst][k];
            int Last = status[pst][k];
            if (!j) if (Last & 3) continue;
            else Last >>= 2;
            int wp = (Last >> p) & 3, wq = (Last >> q) & 3;
            int Now = Last - (wp << p) - (wq << q);
            if (!mp[i][j])
            {
                if (!wp && !wq) f[ths][get_ID(Now)] += val;
                continue;
            }
	//这里必须先判断障碍格子。
            if (!wp && !wq)
                f[ths][get_ID(Now | (1 << p)
                       | (2 << q))] += val;
            else if (!wp || !wq)
            {
                f[ths][get_ID(Now | (wq << p)
                              | (wp << q))] += val;
                f[ths][get_ID(Now | (wp << p)
                              | (wq << q))] += val;
            }
            else if (wp == 1 && wq == 1)
            {
                f[ths][get_ID(Now ^ (3 <<
                       get_brac(Last, q, -2)))] += val;
            }
            else if (wp == 1 && wq == 2)
            {
                bool flag = true;
                for (int j1 = j + 1; j1 < m; ++j1)
                if (mp[i][j1])
                {
                    flag = false;
                    break;
                }
                for (int i1 = i + 1; i1 < n; ++i1)
                for (int j1 = 0; j1 < m; ++j1)
                if (mp[i1][j1])
                {
                    flag = false;
                    break;
                }
                if (flag) f[ths][get_ID(Now)] += val;
	    }
	//这里必须是整个棋盘中最后一个非障碍格。
            else if (wp == 2 && wq == 1)
                f[ths][get_ID(Now)] += val;
            else if (wp == 2 && wq == 2)
                f[ths][get_ID(Now ^ (3 <<
                       get_brac(Last, p, 2)))] += val;
        }
    }
    int64 ans = f[ths][get_ID(0)];
    int64 outMOD = 1000000000LL;
    if (ans < outMOD) printf("%d", ans);
    else printf("%d%09d",
                (int)(ans / outMOD),
                (int)(ans % outMOD));
	//这里必须强制转换类型,否则出错。
    return;
}

int main()
{
    init_file();
    readdata();
    work();
    return 0;
}

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在 IT 领域,文档格式转换是常见需求,尤其在处理多种文件类型时。本文将聚焦于利用 Java 技术栈,尤其是 Apache POI 和 iTextPDF 库,实现 doc、xls(涵盖 Excel 2003 及 Excel 2007+)以及 txt、图片等格式文件向 PDF 的转换,并实现在线浏览功能。 先从 Apache POI 说起,它是一个强大的 Java 库,专注于处理 Microsoft Office 格式文件,比如 doc 和 xls。Apache POI 提供了 HSSF 和 XSSF 两个 API,其中 HSSF 用于读写老版本的 BIFF8 格式(Excel 97-2003),XSSF 则针对新的 XML 格式(Excel 2007+)。这两个 API 均具备读取和写入工作表、单元格、公式、样式等功能。读取 Excel 文件时,可通过创建 HSSFWorkbook 或 XSSFWorkbook 对象来打开相应格式的文件,进而遍历工作簿中的每个 Sheet,获取行和列数据。写入 Excel 文件时,创建新的 Workbook 对象,添加 Sheet、Row 和 Cell,即可构建新 Excel 文件。 再看 iTextPDF,它是一个用于生成和修改 PDF 文档的 Java 库,拥有丰富的 API。创建 PDF 文档时,借助 Document 对象,可定义页面尺寸、边距等属性来定制 PDF 外观。添加内容方面,可使用 Paragraph、List、Table 等元素将文本、列表和表格加入 PDF,图片可通过 Image 类加载插入。iTextPDF 支持多种字体和样式,可设置文本颜色、大小、样式等。此外,iTextPDF 的 TextRenderer 类能将 HTML、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值