Please check release classes (see long text)

本文解析了在Release配置过程中常见的错误及原因。重点介绍了PR与PO在配置Classes时的区别,明确指出PR可定义两种Classes,而PO仅能定义一种,并详细解释了Class与Group之间的正确对应关系。

在进行Release的配置过程中,经常会看到如下错误发生。

错误原因:

在定义Classes时,针对PR可以定义两个Classes,针对PO只能定义一个Class。

因为PR可以配置With Classification的Release Procedure和Without Classification的Release Procedure,针对不同的Procedure可以分别定义一个Class。

而PO只能采用With Classification的Release Procedure,因此只能定义一个Class。

因此上图的错误原因就很明确了,Class与Group之间的对应关系错误。

PR的Release Group和Class之间的对应关系为:

Class1:Group

1对1 或 1对多

Class2:Group

1对1 或 1对多

PO的Release Group和Class之间的对应关系为:

Class1:Group

1对1 或 1对多

class Unet(nn.Module): def __init__(self, num_classes): def forward(self, x): return out 我需要的输出结果是这样的,图片按照代码和题目要求输出,包括Original Image Ground Truth Prediction三部分,都要有对应的输出,并且参与测试的图片都要输出,需要补全上述代码,英文输出: 输出结果: Starting training... Epoch 1/20: 100%|██████████| 46/46 [00:15<00:00, 3.04it/s, loss=2.49]Epoch 1/20, Training Loss: 2.8437 Validation Loss: 2.4612 New best model with validation loss: 2.4612 Epoch 2/20: 100%|██████████| 46/46 [00:15<00:00, 3.00it/s, loss=1.59]Epoch 2/20, Training Loss: 2.0684 Validation Loss: 1.5868 New best model with validation loss: 1.5868 Epoch 3/20: 100%|██████████| 46/46 [00:15<00:00, 3.00it/s, loss=1.26]Epoch 3/20, Training Loss: 1.3412 Validation Loss: 1.1896 New best model with validation loss: 1.1896 Epoch 4/20: 100%|██████████| 46/46 [00:15<00:00, 3.02it/s, loss=1.16]Epoch 4/20, Training Loss: 1.0508 Validation Loss: 1.0617 New best model with validation loss: 1.0617 Epoch 5/20: 100%|██████████| 46/46 [00:15<00:00, 2.99it/s, loss=0.812] Epoch 5/20, Training Loss: 0.9584 Validation Loss: 1.0257 New best model with validation loss: 1.0257 Epoch 6/20: 100%|██████████| 46/46 [00:15<00:00, 2.96it/s, loss=0.841]Epoch 6/20, Training Loss: 0.9038 Validation Loss: 1.0027 New best model with validation loss: 1.0027 Epoch 7/20: 100%|██████████| 46/46 [00:16<00:00, 2.84it/s, loss=0.77]Epoch 7/20, Training Loss: 0.8736 Validation Loss: 0.9764 New best model with validation loss: 0.9764 Epoch 8/20: 100%|██████████| 46/46 [00:16<00:00, 2.87it/s, loss=0.809]Epoch 8/20, Training Loss: 0.8373 Validation Loss: 0.9694 New best model with validation loss: 0.9694 Epoch 9/20: 100%|██████████| 46/46 [00:15<00:00, 2.99it/s, loss=1.04]Epoch 9/20, Training Loss: 0.8129 Validation Loss: 0.9442 New best model with validation loss: 0.9442 Epoch 10/20: 100%|██████████| 46/46 [00:15<00:00, 3.00it/s, loss=0.838]Epoch 10/20, Training Loss: 0.7859 Validation Loss: 0.9309 New best model with validation loss: 0.9309 Epoch 11/20: 100%|██████████| 46/46 [00:15<00:00, 3.01it/s, loss=0.799]Epoch 11/20, Training Loss: 0.7673 Validation Loss: 0.9087 New best model with validation loss: 0.9087 Epoch 12/20: 100%|██████████| 46/46 [00:15<00:00, 3.02it/s, loss=0.673]Epoch 12/20, Training Loss: 0.7386 Validation Loss: 0.9185 Epoch 13/20: 100%|██████████| 46/46 [00:15<00:00, 3.00it/s, loss=0.638]Epoch 13/20, Training Loss: 0.6899 Validation Loss: 0.8576 New best model with validation loss: 0.8576 Epoch 14/20: 100%|██████████| 46/46 [00:15<00:00, 3.01it/s, loss=0.553]Epoch 14/20, Training Loss: 0.6538 Validation Loss: 0.8267 New best model with validation loss: 0.8267 Epoch 15/20: 100%|██████████| 46/46 [00:14<00:00, 3.07it/s, loss=0.765] Epoch 15/20, Training Loss: 0.6342 Validation Loss: 0.8240 New best model with validation loss: 0.8240 Epoch 16/20: 100%|██████████| 46/46 [00:15<00:00, 2.99it/s, loss=0.688]Epoch 16/20, Training Loss: 0.6203 Validation Loss: 0.8336 Epoch 17/20: 100%|██████████| 46/46 [00:15<00:00, 2.99it/s, loss=0.518]Epoch 17/20, Training Loss: 0.6099 Validation Loss: 0.8014 New best model with validation loss: 0.8014 Epoch 18/20: 100%|██████████| 46/46 [00:15<00:00, 2.93it/s, loss=0.444]Epoch 18/20, Training Loss: 0.6023 Validation Loss: 0.8169 Epoch 19/20: 100%|██████████| 46/46 [00:15<00:00, 2.98it/s, loss=0.822]Epoch 19/20, Training Loss: 0.5885 Validation Loss: 0.8045 Epoch 20/20: 100%|██████████| 46/46 [00:15<00:00, 2.90it/s, loss=0.425] Epoch 20/20, Training Loss: 0.5659 Validation Loss: 0.7840 New best model with validation loss: 0.7840 Training finished! <ipython-input-5-1f21aef180ff>:213: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. model.load_state_dict(torch.load("best_segmentation_model.pth")) Model saved to simple_segmentation_model.pth Visualizing model predictions: 而且还要满足题目要求: Task 1. Implement Unet and train it on the PASCAL VOC dataset The Unet paper is here: https://arxiv.org/pdf/1505.04597 Use any number of tricks that you can You cannot use pretrained models, though (until we learn about transfer learning) You must achieve > 15 mean IOU (the code for evaluation is in the end of the notebook) Grading rubric: mean IOU > 15, 10 points mean 12 < IOU <= 15, 8 points mean 10 <= IOU <= 12, 5 points mean IOU < 10, 0 points Important: you need to achieve 10 and more IOU using all 21 classes from PASCAL VOC In the end of the notebook you must execute the last cell and pass the tests, otherwise you will receive 0. 其中不可修改的代码要保证全部正常输出: import os import numpy as np import matplotlib.pyplot as plt from PIL import Image import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader import torchvision.transforms as transforms import torchvision.transforms.functional as TF import torchvision.models as models from torchvision.datasets import VOCSegmentation from tqdm import tqdm torch.manual_seed(42) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Using device: {device}") DATA_DIR = "./data" BATCH_SIZE = 32 NUM_EPOCHS = 20 # Increased to get better results LEARNING_RATE = 0.0001 # Lowered to improve stability IMAGE_SIZE = (224, 224) # PASCAL VOC has 21 classes (including background) NUM_CLASSES = 21 # PASCAL VOC class labels for visualization VOC_CLASSES = [ 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ] # Color map for visualization VOC_COLORMAP = [ [0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128] ] class SegmentationTransform: def __init__(self, size, is_train=False): self.size = size self.is_train = is_train def __call__(self, image, mask): if self.is_train and np.random.random() > 0.5: image = TF.hflip(image) mask = TF.hflip(mask) if self.is_train and np.random.random() > 0.7: angle = np.random.randint(-10, 10) image = TF.rotate(image, angle, interpolation=Image.BILINEAR) mask = TF.rotate(mask, angle, interpolation=Image.NEAREST) if self.is_train and np.random.random() > 0.7: brightness_factor = np.random.uniform(0.8, 1.2) contrast_factor = np.random.uniform(0.8, 1.2) image = TF.adjust_brightness(image, brightness_factor) image = TF.adjust_contrast(image, contrast_factor) image = TF.resize(image, self.size, interpolation=Image.BILINEAR) mask = TF.resize(mask, self.size, interpolation=Image.NEAREST) image = TF.to_tensor(image) mask_array = np.array(mask) mask_array[mask_array == 255] = 0 # Set ignore pixels to background mask = torch.from_numpy(mask_array).long() # Normalize image image = TF.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) return image, mask class VOCDatasetWrapper(Dataset): def __init__(self, dataset, transform=None): self.dataset = dataset self.transform = transform def __len__(self): return len(self.dataset) def __getitem__(self, idx): image, mask = self.dataset[idx] if self.transform: image, mask = self.transform(image, mask) return image, mask voc_train = VOCSegmentation(root=DATA_DIR, year='2012', image_set='train', download=True) voc_val = VOCSegmentation(root=DATA_DIR, year='2012', image_set='val', download=True) train_transform = SegmentationTransform(IMAGE_SIZE, is_train=True) val_transform = SegmentationTransform(IMAGE_SIZE, is_train=False) train_dataset = VOCDatasetWrapper(voc_train, train_transform) val_dataset = VOCDatasetWrapper(voc_val, val_transform) train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2) # Reduced workers val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=2) # Reduced workers # Display some examples from the dataset def visualize_examples(dataset, num_examples=3): fig, axes = plt.subplots(num_examples, 2, figsize=(12, 4 * num_examples)) for i in range(num_examples): # Get a sample idx = np.random.randint(0, len(dataset)) image, mask = dataset.dataset[idx] # Original image axes[i, 0].imshow(image) axes[i, 0].set_title(f"Original Image {idx}") axes[i, 0].axis('off') # Colored mask colored_mask = np.zeros((mask.size[1], mask.size[0], 3), dtype=np.uint8) mask_array = np.array(mask) for class_idx, color in enumerate(VOC_COLORMAP): colored_mask[mask_array == class_idx] = color axes[i, 1].imshow(colored_mask) axes[i, 1].set_title(f"Segmentation Mask {idx}") axes[i, 1].axis('off') plt.tight_layout() plt.show() # Visualize examples before training print("Displaying dataset examples:") visualize_examples(train_dataset) import torch def evaluate_segmentation(model, val_loader, num_classes, device='cuda'): model.eval() confusion_matrix = torch.zeros(num_classes, num_classes, dtype=torch.long, device=device) ignore_index = 255 with torch.no_grad(): for images, masks in val_loader: images = images.to(device) masks = masks.to(device) outputs = model(images) preds = torch.argmax(outputs, dim=1) # [B, H, W] preds = preds.view(-1) masks = masks.view(-1) # Filter out ignore pixels valid_mask = (masks != ignore_index) preds = preds[valid_mask] gt = masks[valid_mask] # Vectorized confusion matrix update indices = gt * num_classes + preds # also on the GPU bins = torch.bincount(indices, minlength=num_classes*num_classes) confusion_matrix += bins.reshape(num_classes, num_classes) # Move confusion matrix back to CPU if you need .item() or numpy confusion_matrix = confusion_matrix.cpu() # Compute IoU class_iou = [] for c in range(num_classes): TP = confusion_matrix[c, c].item() FN = confusion_matrix[c, :].sum().item() - TP FP = confusion_matrix[:, c].sum().item() - TP denom = TP + FP + FN if denom == 0: iou_c = float('nan') else: iou_c = TP / denom class_iou.append(iou_c) # mean_iou valid_iou = [x for x in class_iou if not np.isnan(x)] mean_iou = float(np.mean(valid_iou)) if len(valid_iou) > 0 else 0.0 return class_iou, mean_iou class_iou, mean_iou = evaluate_segmentation( model=trained_model, val_loader=val_loader, num_classes=NUM_CLASSES, device=device ) # Print results for i, iou_val in enumerate(class_iou): print(f"Class {i} IoU = {iou_val:.4f}") print(f"Mean IoU over {len(class_iou)} classes = {mean_iou:.4f}") 尤其是这部分一定要保证可以正常输出但不能更改代码: assert mean_iou > 0.10, 'Your IOU must be larger than 10 to get the grade' if mean_iou > 0.15: print('Full grade, 10 points') elif 0.12 < mean_iou <= 0.15: print('Partial grade, 8 points') elif 0.10 < mean_iou <= 0.12: print('Partial grade, 5 points') else: print('IOU is less than 10, 0 points') print('All tests pass!')
06-30
"Control-agent": { "http-host": "localhost", "http-port": 8000 }, "Dhcp4": { "interfaces-config": { "interfaces": [ "enp3s0f0" ] }, "control-socket": { "socket-type": "unix", "socket-name": "/path/to/kea4-ctrl-socket" }, } "Dhcp4": { // Add names of your network interfaces to listen on. "interfaces-config": { // See section 8.2.4 for more details. You probably want to add just // interface name (e.g. "eth0" or specific IPv4 address on that // interface name (e.g. "eth0/192.0.2.1"). "interfaces": ["enp3s0f1/192.168.100.1"] // Kea DHCPv4 server by default listens using raw sockets. This ensures // all packets, including those sent by directly connected clients // that don't have IPv4 address yet, are received. However, if your // traffic is always relayed, it is often better to use regular // UDP sockets. If you want to do that, uncomment this line: // "dhcp-socket-type": "udp" }, // Kea supports control channel, which is a way to receive management // commands while the server is running. This is a Unix domain socket that // receives commands formatted in JSON, e.g. config-set (which sets new // configuration), config-reload (which tells Kea to reload its // configuration from file), statistic-get (to retrieve statistics) and many // more. For detailed description, see Sections 8.8, 16 and 15. "control-socket": { "socket-type": "unix", "socket-name": "kea4-ctrl-socket" }, // Use Memfile lease database backend to store leases in a CSV file. // Depending on how Kea was compiled, it may also support SQL databases // (MySQL and/or PostgreSQL). Those database backends require more // parameters, like name, host and possibly user and password. // There are dedicated examples for each backend. See Section 7.2.2 "Lease // Storage" for details. "lease-database": { // Memfile is the simplest and easiest backend to use. It's an in-memory // C++ database that stores its state in CSV file. "type": "memfile", "lfc-interval": 3600 }, // Kea allows storing host reservations in a database. If your network is // small or you have few reservations, it's probably easier to keep them // in the configuration file. If your network is large, it's usually better // to use database for it. To enable it, uncomment the following: // "hosts-database": { // "type": "mysql", // "name": "kea", // "user": "kea", // "password": "1234", // "host": "localhost", // "port": 3306 // }, // See Section 7.2.3 "Hosts storage" for details. // Setup reclamation of the expired leases and leases affinity. // Expired leases will be reclaimed every 10 seconds. Every 25 // seconds reclaimed leases, which have expired more than 3600 // seconds ago, will be removed. The limits for leases reclamation // are 100 leases or 250 ms for a single cycle. A warning message // will be logged if there are still expired leases in the // database after 5 consecutive reclamation cycles. // If both "flush-reclaimed-timer-wait-time" and "hold-reclaimed-time" are // not 0, when the client sends a release message the lease is expired // instead of being deleted from the lease storage. "expired-leases-processing": { "reclaim-timer-wait-time": 10, "flush-reclaimed-timer-wait-time": 25, "hold-reclaimed-time": 3600, "max-reclaim-leases": 100, "max-reclaim-time": 250, "unwarned-reclaim-cycles": 5 }, // Global timers specified here apply to all subnets, unless there are // subnet specific values defined in particular subnets. "renew-timer": 900, "rebind-timer": 60, "valid-lifetime": 3600, // Many additional parameters can be specified here: // - option definitions (if you want to define vendor options, your own // custom options or perhaps handle standard options // that Kea does not support out of the box yet) // - client classes // - hooks // - ddns information (how the DHCPv4 component can reach a DDNS daemon) // // Some of them have examples below, but there are other parameters. // Consult Kea User's Guide to find out about them. // These are global options. They are going to be sent when a client // requests them, unless overwritten with values in more specific scopes. // The scope hierarchy is: // - global (most generic, can be overwritten by class, subnet or host) // - class (can be overwritten by subnet or host) // - subnet (can be overwritten by host) // - host (most specific, overwrites any other scopes) // // Not all of those options make sense. Please configure only those that // are actually useful in your network. // // For a complete list of options currently supported by Kea, see // Section 7.2.8 "Standard DHCPv4 Options". Kea also supports // vendor options (see Section 7.2.10) and allows users to define their // own custom options (see Section 7.2.9). "option-data": [ // When specifying options, you typically need to specify // one of (name or code) and data. The full option specification // covers name, code, space, csv-format and data. // space defaults to "dhcp4" which is usually correct, unless you // use encapsulate options. csv-format defaults to "true", so // this is also correct, unless you want to specify the whole // option value as long hex string. For example, to specify // domain-name-servers you could do this: // { // "name": "domain-name-servers", // "code": 6, // "csv-format": "true", // "space": "dhcp4", // "data": "192.0.2.1, 192.0.2.2" // } // but it's a lot of writing, so it's easier to do this instead: { "name": "domain-name-servers", "data": "192.0.2.1, 192.0.2.2" }, // Typically people prefer to refer to options by their names, so they // don't need to remember the code names. However, some people like // to use numerical values. For example, option "domain-name" uses // option code 15, so you can reference to it either by // "name": "domain-name" or "code": 15. { "code": 15, "data": "example.org" }, // Domain search is also a popular option. It tells the client to // attempt to resolve names within those specified domains. For // example, name "foo" would be attempted to be resolved as // foo.mydomain.example.com and if it fails, then as foo.example.com { "name": "domain-search", "data": "mydomain.example.com, example.com" }, // String options that have a comma in their values need to have // it escaped (i.e. each comma is preceded by two backslashes). // That's because commas are reserved for separating fields in // compound options. At the same time, we need to be conformant // with JSON spec, that does not allow "\,". Therefore the // slightly uncommon double backslashes notation is needed. // Legal JSON escapes are \ followed by "\/bfnrt character // or \u followed by 4 hexadecimal numbers (currently Kea // supports only \u0000 to \u00ff code points). // CSV processing translates '\\' into '\' and '\,' into ',' // only so for instance '\x' is translated into '\x'. But // as it works on a JSON string value each of these '\' // characters must be doubled on JSON input. { "name": "boot-file-name", "data": "EST5EDT4\\,M3.2.0/02:00\\,M11.1.0/02:00" }, // Options that take integer values can either be specified in // dec or hex format. Hex format could be either plain (e.g. abcd) // or prefixed with 0x (e.g. 0xabcd). { "name": "default-ip-ttl", "data": "0xf0" } // Note that Kea provides some of the options on its own. In particular, // it sends IP Address lease type (code 51, based on valid-lifetime // parameter, Subnet mask (code 1, based on subnet definition), Renewal // time (code 58, based on renew-timer parameter), Rebind time (code 59, // based on rebind-timer parameter). ], // Other global parameters that can be defined here are option definitions // (this is useful if you want to use vendor options, your own custom // options or perhaps handle options that Kea does not handle out of the box // yet). // You can also define classes. If classes are defined, incoming packets // may be assigned to specific classes. A client class can represent any // group of devices that share some common characteristic, e.g. Windows // devices, iphones, broken printers that require special options, etc. // Based on the class information, you can then allow or reject clients // to use certain subnets, add special options for them or change values // of some fixed fields. "client-classes": [ { // This specifies a name of this class. It's useful if you need to // reference this class. "name": "voip", // This is a test. It is an expression that is being evaluated on // each incoming packet. It is supposed to evaluate to either // true or false. If it's true, the packet is added to specified // class. See Section 12 for a list of available expressions. There // are several dozens. Section 8.2.14 for more details for DHCPv4 // classification and Section 9.2.19 for DHCPv6. "test": "substring(option[60].hex,0,6) == 'Aastra'", // If a client belongs to this class, you can define extra behavior. // For example, certain fields in DHCPv4 packet will be set to // certain values. "next-server": "192.0.2.254", "server-hostname": "hal9000", "boot-file-name": "/dev/null" // You can also define option values here if you want devices from // this class to receive special options. } ], // Another thing possible here are hooks. Kea supports a powerful mechanism // that allows loading external libraries that can extract information and // even influence how the server processes packets. Those libraries include // additional forensic logging capabilities, ability to reserve hosts in // more flexible ways, and even add extra commands. For a list of available // hook libraries, see https://gitlab.isc.org/isc-projects/kea/wikis/Hooks-available. "hooks-libraries":[ { "library": "/usr/local/lib64/kea/hooks/libdhcp_macauth.so", "parameters": { "server_ip": "10.10.10.1", "ac_ip": "10.10.10.102", "port": 5001, "shared_secret": "7a5b8c3e9f" } }, { "library": "/usr/local/lib64/kea/hooks/libdhcp_lease_cmds.so" } //{ // "library": "/usr/local/lib64/kea/hooks/libdhcp_lease_query.so" // } ], // "hooks-libraries": [ // { // // Forensic Logging library generates forensic type of audit trail // // of all devices serviced by Kea, including their identifiers // // (like MAC address), their location in the network, times // // when they were active etc. // "library": "/usr/local/lib64/kea/hooks/libdhcp_legal_log.so", // "parameters": { // "base-name": "kea-forensic4" // } // }, // { // // Flexible identifier (flex-id). Kea software provides a way to // // handle host reservations that include addresses, prefixes, // // options, client classes and other features. The reservation can // // be based on hardware address, DUID, circuit-id or client-id in // // DHCPv4 and using hardware address or DUID in DHCPv6. However, // // there are sometimes scenario where the reservation is more // // complex, e.g. uses other options that mentioned above, uses part // // of specific options or perhaps even a combination of several // // options and fields to uniquely identify a client. Those scenarios // // are addressed by the Flexible Identifiers hook application. // "library": "/usr/local/lib64/kea/hooks/libdhcp_flex_id.so", // "parameters": { // "identifier-expression": "relay4[2].hex" // } // }, // { // // the MySQL host backend hook library required for host storage. // "library": "/usr/local/lib64/kea/hooks/libdhcp_mysql.so" // } // ], // Below an example of a simple IPv4 subnet declaration. Uncomment to enable // it. This is a list, denoted with [ ], of structures, each denoted with // { }. Each structure describes a single subnet and may have several // parameters. One of those parameters is "pools" that is also a list of // structures. "subnet4": [ { // This defines the whole subnet. Kea will use this information to // determine where the clients are connected. This is the whole // subnet in your network. // Subnet identifier should be unique for each subnet. "id": 1, // This is mandatory parameter for each subnet. "subnet": "192.168.30.0/24", // Pools define the actual part of your subnet that is governed // by Kea. Technically this is optional parameter, but it's // almost always needed for DHCP to do its job. If you omit it, // clients won't be able to get addresses, unless there are // host reservations defined for them. "pools": [ { "pool": "192.168.30.10 - 192.168.30.200" } ], // This is one of the subnet selectors. Uncomment the "interface" // parameter and specify the appropriate interface name if the DHCPv4 // server will receive requests from local clients (connected to the // same subnet as the server). This subnet will be selected for the // requests received by the server over the specified interface. // This rule applies to the DORA exchanges and rebinding clients. // Renewing clients unicast their messages, and the renewed addresses // are used by the server to determine the subnet they belong to. // When this parameter is used, the "relay" parameter is typically // unused. // "interface": "eth0", // This is another subnet selector. Uncomment the "relay" parameter // and specify a list of the relay addresses. The server will select // this subnet for lease assignments when it receives queries over one // of these relays. When this parameter is used, the "interface" parameter // is typically unused. // "relay": { // "ip-addresses": [ "10.0.0.1" ] // }, // These are options that are subnet specific. In most cases, // you need to define at least routers option, as without this // option your clients will not be able to reach their default // gateway and will not have Internet connectivity. "option-data": [ { // For each IPv4 subnet you most likely need to specify at // least one router. "name": "routers", "data": "192.0.2.1" } ], // Kea offers host reservations mechanism. Kea supports reservations // by several different types of identifiers: hw-address // (hardware/MAC address of the client), duid (DUID inserted by the // client), client-id (client identifier inserted by the client) and // circuit-id (circuit identifier inserted by the relay agent). // // Kea also support flexible identifier (flex-id), which lets you // specify an expression that is evaluated for each incoming packet. // Resulting value is then used for as an identifier. // // Note that reservations are subnet-specific in Kea. This is // different than ISC DHCP. Keep that in mind when migrating // your configurations. "reservations": [ // This is a reservation for a specific hardware/MAC address. // It's a rather simple reservation: just an address and nothing // else. // { // "hw-address": "1a:1b:1c:1d:1e:1f", // "ip-address": "192.0.2.201" // }, // This is a reservation for a specific client-id. It also shows // the this client will get a reserved hostname. A hostname can // be defined for any identifier type, not just client-id. { "client-id": "01:11:22:33:44:55:66", "ip-address": "192.168.30.202", "hostname": "special-snowflake" }, // The third reservation is based on DUID. This reservation defines // a special option values for this particular client. If the // domain-name-servers option would have been defined on a global, // subnet or class level, the host specific values take preference. { "duid": "01:02:03:04:05", "ip-address": "192.168.30.203", "option-data": [ { "name": "domain-name-servers", "data": "10.1.1.202, 10.1.1.203" } ] }, // The fourth reservation is based on circuit-id. This is an option // inserted by the relay agent that forwards the packet from client // to the server. In this example the host is also assigned vendor // specific options. // // When using reservations, it is useful to configure // reservations-global, reservations-in-subnet, // reservations-out-of-pool (subnet specific parameters) // and host-reservation-identifiers (global parameter). { "client-id": "01:12:23:34:45:56:67", "ip-address": "192.168.30.204", "option-data": [ { "name": "vivso-suboptions", "data": "4491" }, { "name": "tftp-servers", "space": "vendor-4491", "data": "10.1.1.202, 10.1.1.203" } ] }, // This reservation is for a client that needs specific DHCPv4 // fields to be set. Three supported fields are next-server, // server-hostname and boot-file-name { "client-id": "01:0a:0b:0c:0d:0e:0f", "ip-address": "192.168.30.205", "next-server": "192.168.30.1", "server-hostname": "hal9000", "boot-file-name": "/dev/null" }, // This reservation is using flexible identifier. Instead of // relying on specific field, sysadmin can define an expression // similar to what is used for client classification, // e.g. substring(relay[0].option[17],0,6). Then, based on the // value of that expression for incoming packet, the reservation // is matched. Expression can be specified either as hex or // plain text using single quotes. // // Note: flexible identifier requires flex_id hook library to be // loaded to work. { "flex-id": "'s0mEVaLue'", "ip-address": "192.168.30.206" } // You can add more reservations here. ] // You can add more subnets there. }, { "subnet": "192.168.100.0/24", "id":100, "pools": [ { "pool": "192.168.100.100 - 192.168.100.200" } ], "option-data": [ { "name": "routers", "data": "192.168.100.2" }, { "name": "domain-name-servers", "data": "8.8.8.8, 8.8.4.4" } ] }, { "subnet": "192.168.10.0/24", "id":10, "pools": [ { "pool": "192.168.10.100 - 192.168.10.200" } ], "relay": { "ip-addresses": ["192.168.10.1"] }, "option-data": [ { "name": "routers", "data": "192.168.10.1" }, { "name": "domain-name-servers", "data": "114.114.114.114,8.8.8.8" } ] }, { "id":20, "subnet": "192.168.20.0/24", "pools": [ { "pool": "192.168.20.100 - 192.168.20.200" } ], "relay": { "ip-addresses": ["192.168.20.1"] }, "option-data": [ { "name": "routers", "data": "192.168.20.1" }, { "name": "domain-name-servers", "data": "114.114.114.114, 8.8.4.4" } ] } ], // There are many, many more parameters that DHCPv4 server is able to use. // They were not added here to not overwhelm people with too much // information at once. // Logging configuration starts here. Kea uses different loggers to log various // activities. For details (e.g. names of loggers), see Chapter 18. "loggers": [ { // This section affects kea-dhcp4, which is the base logger for DHCPv4 // component. It tells DHCPv4 server to write all log messages (on // severity INFO or more) to a file. "name": "kea-dhcp4", "output-options": [ { // Specifies the output file. There are several special values // supported: // - stdout (prints on standard output) // - stderr (prints on standard error) // - syslog (logs to syslog) // - syslog:name (logs to syslog using specified name) // Any other value is considered a name of the file "output": "kea-dhcp4.log" // Shorter log pattern suitable for use with systemd, // avoids redundant information // "pattern": "%-5p %m\n", // This governs whether the log output is flushed to disk after // every write. // "flush": false, // This specifies the maximum size of the file before it is // rotated. // "maxsize": 1048576, // This specifies the maximum number of rotated files to keep. // "maxver": 8 } ], // This specifies the severity of log messages to keep. Supported values // are: FATAL, ERROR, WARN, INFO, DEBUG "severity": "INFO", // If DEBUG level is specified, this value is used. 0 is least verbose, // 99 is most verbose. Be cautious, Kea can generate lots and lots // of logs if told to do so. "debuglevel": 0 } ] } } 查看以上代码判断其是否有错误点并纠正过来
最新发布
08-15
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值