线性回归(w和b)-穷举法
1. 导包,numpy和画图matplotlib
import numpy as np
import matplotlib.pyplot as plt
2. 创造数据
简单起见,创造三个样本。
data_x = [1.0, 2.0, 3.0]
data_y = [6.0, 9.0, 12.0]
3. 建立线性回归模型
def forward(x):
return x * w + b
4. 创建损失函数
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) * (y_pred - y)
5. 训练
选取了0-6范围的w和b值
w_list = []
loss_list = []
b_list = []
for w in np.arange(0.0, 6.1, 0.1):
for b in np.arange(0.0, 6.1, 0.1):
loss_sum = 0
for x_train, y_train in zip(data_x, data_y):
print('w = ', w)
y_pred_test = forward(x_train)
print('y = ', y_pred_test)
loss1 = loss(x_train, y_train)
loss_sum += loss

最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



