CodeFroce Round 340 div2 E XOR and Favorite Number【莫队算法】

本文介绍了一种使用莫队算法解决复杂数组查询问题的方法,特别是针对异或操作的查询。通过预处理前缀和及运用异或性质,文章详细解释了如何有效地计算指定子数组中满足特定异或条件的元素对数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面:

Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, …, aj is equal to k.

Input 
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob’s favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob’s array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output 
Print m lines, answer the queries in the order they appear in the input.

Examples 
input 
6 2 3 
1 2 1 1 0 3 
1 6 
3 5 
output 


input 
5 3 1 
1 1 1 1 1 
1 5 
2 4 
1 3 
output 



Note 
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.

In the second sample xor equals 1 for all subarrays of an odd length.

大致思路:

对于数组中的每一个数求前缀和,公式为: 
pref[i]=pref[i-1]^a[i]

然后根据异或的性质可以知道: 
a[i] ^ a[i+1]^…..^a[j]=pref[j]-pref[i-1]

还有一个公式:

a^b=k 可以推出: a^k=b 
这样就可以利用莫队算法了来解决这道题了。 
首先需要开一个大小为2^20的桶(虽然题上说数据只到1e6,但异或之后的值是有可能比1e6大的,那就干脆开大一点) 
然后bow[i]的意思是异或值为i的数在区间内出现了几次。这样修改区间的时候就可以利用这个桶对答案进行修改。具体见代码。

然后是关于莫队算法说一些自己的理解

莫队算法的核心是分块+提前知道询问区间。 
也就是这些询问操作都是离线的,中间不能对区间有修改。然后就是根据块将询问排序,然后就暴力开始让L和R变化到询问区间,这样使得减少L,R的无效操作从而加快查询效率。

代码:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 const int maxn=1<<20;
 5 struct node{
 6     int l,r,id;
 7 }query[maxn];//储存询问的结构体数组
 8 ll a[maxn],ans[maxn],Ans=0;
 9 int bow[maxn],size,pos[maxn],k;
10 bool cmp(node a,node b)//根据分块进行排序
11 {
12     if(pos[a.l]==pos[b.l])
13         return a.r<b.r;
14     return pos[a.l]<pos[b.l];
15 }
16 void add(int x)
17 {
18     Ans+=bow[a[x]^k];//利用公式可以得到在x为结束点,异或值为k的对数
19     bow[a[x]]++;
20 }
21 void del(int x)
22 {
23     bow[a[x]]--;
24     Ans-=bow[a[x]^k];
25 }
26 int main()
27 {
28     ios::sync_with_stdio(false);
29     int n,m;
30     cin>>n>>m>>k;
31     size=sqrt(n);
32     for(int i=1;i<=n;++i){
33         cin>>a[i];
34         a[i]=a[i]^a[i-1];
35         pos[i]=i/size;//分块
36     }
37     for(int i=1;i<=m;++i){
38         cin>>query[i].l>>query[i].r;
39         query[i].id=i;
40     }
41     bow[0]=1;
42     sort(query+1,query+m+1,cmp);
43     int L=1,R=0;
44     for(int i=1;i<=m;++i){
45         while(L<query[i].l)//调整区间
46         {
47             del(L-1);//这里的顺序是根据第二个公式得到
48             ++L;
49         }
50         while(L>query[i].l)
51         {
52             --L;
53             add(L-1);
54         }
55         while(R<query[i].r)
56         {
57             ++R;
58             add(R);
59         }
60         while(R>query[i].r)
61         {
62             del(R);
63             --R;
64         }
65         ans[query[i].id]=Ans;
66     }
67     for(int i=1;i<=m;++i)
68         cout<<ans[i]<<endl;
69     return 0;
70 }

 

转载于:https://www.cnblogs.com/SCaryon/p/7374984.html

内容概要:本文详细介绍了900W或1Kw,20V-90V 10A双管正激可调电源充电机的研发过程和技术细节。首先阐述了项目背景,强调了充电机在电动汽车和可再生能源领域的重要地位。接着深入探讨了硬件设计方面,包括PCB设计、磁性器件的选择及其对高功率因数的影响。随后介绍了软件实现,特别是程序代码中关键的保护功能如过流保护的具体实现方法。此外,文中还提到了充电机所具备的各种保护机制,如短路保护、欠压保护、电池反接保护、过流保护和过温度保护,确保设备的安全性和可靠性。通讯功能方面,支持RS232隔离通讯,采用自定义协议实现远程监控和控制。最后讨论了散热设计的重要性,以及为满足量产需求所做的准备工作,包括提供详细的PCB图、程序代码、BOM清单、磁性器件和散热片规格书等源文件。 适合人群:从事电力电子产品研发的技术人员,尤其是关注电动汽车充电解决方案的专业人士。 使用场景及目标:适用于需要高效、可靠充电解决方案的企业和个人开发者,旨在帮助他们快速理解和应用双管正激充电机的设计理念和技术要点,从而加速产品开发进程。 其他说明:本文不仅涵盖了理论知识,还包括具体的工程实践案例,对于想要深入了解充电机内部构造和工作原理的人来说是非常有价的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值