每天一道剑指offer-旋转数组的最小值

旋转数组最小值与算法思维
探讨了在非减排序数组旋转后的背景下,如何通过二分查找法高效地找到旋转数组的最小值,同时介绍了斐波那契数列及其在算法中的应用。

考试结束,班级平均分只拿到了年级第二,班主任于是问道:大家都知道世界第一高峰珠穆朗玛峰,有人知道世界第二高峰是什么吗?正当班主任要继续发话,只听到角落默默响起来一个声音:”乔戈里峰

前言

2018.11.26号打卡今天的题目斐波那契数列

昨天的题解

题目

每天一道剑指offer-旋转数组的最小值

题目详述

把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。

题目详解

思路

  • 根据题意说明是一个递增数组的旋转,所以如题所示【3,4,5】,【1,2】还是局部递增的,在这种的数组中查找,一般选择二分的方法;基本模型有了,下面试着分析:

  • 1.先取出中间的数值,和最后一个比较5>2 说明mid之前的某些部分旋转到了后面,所以下次寻找 start = mid+1 开始;

  • 2.取出的中间值要是小于end,说明mid-end之间都应为被旋转的部分,所以最小应该在mid的前面,但是也有可能当前的mid 就是最小的值 所以下次需找的应该 从mid开始,也即end = mid 开始

  • 3.当mid == end的时候,说明数组中存在着相等的数值,可能是这样的形式 【2,2,2,2,1,2】所以应该选择的end 应该递减1 或者begin加1作为下次寻找的上界。

代码

640?wx_fmt=png

代码讲解

  • 6-7行如果数组没有旋转,那么就是第一个数

  • 11-21行二分查找,要注意的就是18-21行,这里由于数组出现相等的数字,只能start++或者end--也行

结束语

2018.11.26号打卡(记得送包辣条吃~~~

作者乔戈里亲历2019秋招,哈工大计算机本硕,百度java工程师,欢迎大家关注我的微信公众号:程序员乔戈里,公众号有3T编程资源,以及我和我朋友(百度C++工程师)在秋招期间整理的近200M的面试必考的java与C++面经,并有每天一道leetcode打卡群与技术交流群,欢迎关注。

基于51单片机,实现对直流电机的调速、测速以及正反转控制。项目包含完整的仿真文件、源程序、原理图和PCB设计文件,适合学习和实践51单片机在电机控制方面的应用。 功能特点 调速控制:通过按键调整PWM占空比,实现电机的速度调节。 测速功能:采用霍尔传感器非接触式测速,实时显示电机转速。 正反转控制:通过按键切换电机的正转和反转状态。 LCD显示:使用LCD1602液晶显示屏,显示当前的转速和PWM占空比。 硬件组成 主控制器:STC89C51/52单片机(与AT89S51/52、AT89C51/52通用)。 测速传感器:霍尔传感器,用于非接触式测速。 显示模块:LCD1602液晶显示屏,显示转速和占空比。 电机驱动:采用双H桥电路,控制电机的正反转和调速。 软件设计 编程语言:C语言。 开发环境:Keil uVision。 仿真工具:Proteus。 使用说明 液晶屏显示: 第一行显示电机转速(单位:转/分)。 第二行显示PWM占空比(0~100%)。 按键功能: 1键:加速键,短按占空比加1,长按连续加。 2键:减速键,短按占空比减1,长按连续减。 3键:反转切换键,按下后电机反转。 4键:正转切换键,按下后电机正转。 5键:开始暂停键,按一下开始,再按一下暂停。 注意事项 磁铁和霍尔元件的距离应保持在2mm左右,过近可能会在电机转动时碰到霍尔元件,过远则可能导致霍尔元件无法检测到磁铁。 资源文件 仿真文件:Proteus仿真文件,用于模拟电机控制系统的运行。 源程序:Keil uVision项目文件,包含完整的C语言源代码。 原理图:电路设计原理图,详细展示了各模块的连接方式。 PCB设计:PCB布局文件,可用于实际电路板的制作。
【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开研究,重点进行了系统建模与控制策略的设计与仿真验证。通过引入螺旋桨倾斜机构,该无人机能够实现全向力矢量控制,从而具备更强的姿态调节能力和六自由度全驱动特性,克服传统四旋翼欠驱动限制。研究内容涵盖动力学建模、控制系统设计(如PID、MPC等)、Matlab/Simulink环境下的仿真验证,并可能涉及轨迹跟踪、抗干扰能力及稳定性分析,旨在提升无人机在复杂环境下的机动性与控制精度。; 适合人群:具备一定控制理论基础和Matlab/Simulink仿真能力的研究生、科研人员及从事无人机系统开发的工程师,尤其适合研究先进无人机控制算法的技术人员。; 使用场景及目标:①深入理解全驱动四旋翼无人机的动力学建模方法;②掌握基于Matlab/Simulink的无人机控制系统设计与仿真流程;③复现硕士论文级别的研究成果,为科研项目或学术论文提供技术支持与参考。; 阅读建议:建议结合提供的Matlab代码与Simulink模型进行实践操作,重点关注建模推导过程与控制器参数调优,同时可扩展研究不同控制算法的性能对比,以深化对全驱动系统控制机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值