Query on a tree 树链剖分 第一次写

本文介绍了一种利用树状结构进行高效路径查询的方法,并通过线段树实现节点属性的快速更新与查询优化。文章详细展示了如何构建树形结构、进行节点划分以及线段树的具体实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <map>
#include <cmath>
#include <queue>
#include <string>
#include <set>
#include <stack>

using namespace std;
#define ll long long
#define eps 1e-8
#define pi acos(-1.0)
#define inf 0x3f3f3f3f
#define mod 1000000007
#define sqr(x) ((x)*(x))
#define lson (u<<1)
#define rson (u<<1|1)
#define N 10100
#define M 100100

int n;
int h[N],vv[M],nxt[M],ww[M],e;
int sz[N],son[N],fa[N],top[N],dep[N];
int eid[N],E,cost[N];
int re[N];

int ma[N<<2];

void add(int u,int v,int w)
{
	vv[e] = v, ww[e] = w, nxt[e] = h[u], h[u] = e++;
	vv[e] = u, ww[e] = w, nxt[e] = h[v], h[v] = e++;

}
void dfs1(int u,int f,int d){
	sz[u] = 1, fa[u] = f, dep[u] = d;
	son[u] = -1;
	for(int i=h[u];i+1;i=nxt[i])
	{
		int v = vv[i];
		if(v==f) continue;
		dfs1(v,u,d+1);
		if(son[u]==-1||sz[vv[son[u]]]<sz[v]) {
			son[u] = i;
		}
		sz[u] += sz[v];

	}

}
void dfs2(int u,int f)
{
	top[u] = u;

	if(f+1) {
        int fv = vv[f^1];
		top[u] = ( son[fv]==f ? top[fv]:u );
		re[u] = ++E;
		eid[f/2+1] = E;
		cost[E] = ww[f];
	}

	if(son[u]+1){

		dfs2(vv[son[u]],son[u]);
	}
	for(int i=h[u];i+1;i=nxt[i]){
		int v = vv[i];
		if(v==fa[u]||i==son[u]) continue;
		dfs2(v,i);
	}

}

void pushUp(int u){
	ma[u] = max(ma[lson],ma[rson]);
}
void build(int u,int l,int r){
	if(l>=r){
		ma[u] = cost[l];
		return;
	}
	int mid = (l+r)>>1;
	build(lson,l,mid);
	build(rson,mid+1,r);
	pushUp(u);
}
void update(int u,int l,int r,int pos,int val){
	if(l>=r){
		ma[u] = val;
		return;
	}
	int mid = (l+r)>>1;
	if(pos<=mid) update(lson,l,mid,pos,val);
	else update(rson,mid+1,r,pos,val);
	pushUp(u);
}
int query(int u,int L,int R,int l,int r){
	if(l<=L&&R<=r){
		return ma[u];
	}
	if(l>R||r<L) return 0;
	int mid = (L+R)>>1;
	return max(query(lson,L,mid,l,r),query(rson,mid+1,R,l,r));

}
int cal(int u,int v)
{
	int ret = 0;
	int f1 = top[u],f2 = top[v];
	while(f1!=f2){
		if(dep[f1]<dep[f2]){
			swap(f1,f2);
			swap(u,v);
		}
		ret = max(ret,query(1,1,E,re[f1],re[u]));
		u = fa[f1],f1 = top[u];

	}
	if(u==v) return ret;
	if(dep[u]>dep[v]) swap(u,v);
	return max(ret,query(1,1,E,re[vv[son[u]]],re[v]));
}
int main()
{
	char op[20];
	int T,a,b,c;
	scanf("%d",&T);
	while(T--)
	{

		memset(h,-1,sizeof(h));
		E = e = 0;
		scanf("%d",&n);
		for(int i=1;i<n;i++)
			scanf("%d%d%d",&a,&b,&c),add(a,b,c);

		dfs1(1,-1,1);

		dfs2(1,-1);

		build(1,1,E);

		while(~scanf("%s",op))
		{
			if(strcmp(op,"DONE")==0) break;
			scanf("%d%d",&a,&b);
			if(strcmp(op,"CHANGE")==0){
				update(1,1,E,eid[a],b);
			}
			else
				printf("%d\n",cal(a,b));
		}

	}


}

//#pragma GCC optimize(2,3,“Ofast”,“inline”, “-ffast-math”) //#pragma GCC target(“avx,sse2,sse3,sse4,mmx”) #include #include #include #include #include #include #include #include #include<unordered_map> #include #include #include #include #include #include #include #define fi first #define se second #define pb push_back #define y1 hsduaishxu #define mkp make_pair using namespace std; typedef long long ll; typedef long double ld; typedef unsigned long long ull; typedef pair<int,int> pii; typedef pair<ll,int> pli; typedef pair<int,ll> pil; typedef pair<ll,ll> pll; typedef unsigned int uint; typedef vector vpii; typedef int128 i128; const int maxn=1000005; const ll mod=1000000007; inline int Min(int x,int y){return x<y?x:y;} inline int Max(int x,int y){return x>y?x:y;} inline ll Min(ll x,ll y){return x<y?x:y;} inline ll Max(ll x,ll y){return x>y?x:y;} inline void ad(int &x,int y,int z){x=y+z;if(x>=mod) x-=mod;} inline void ad(ll &x,ll y,ll z){x=y+z;if(x>=mod) x-=mod;} inline void ad(int &x,int y){x+=y;if(x>=mod) x-=mod;} inline void ad(int &x,ll y){x+=y;if(x>=mod) x-=mod;} inline void ad(ll &x,ll y){x+=y;if(x>=mod) x-=mod;} inline void siu(int &x,int y,int z){x=y-z;if(x<0) x+=mod;} inline void siu(int &x,int y){x-=y;if(x<0) x+=mod;} inline void siu(ll &x,ll y){x-=y;if(x<0) x+=mod;} inline ll myabs(ll x){return x<0?-x:x;} inline void tmn(int &x,int y){if(y<x) x=y;} inline void tmx(int &x,int y){if(y>x) x=y;} inline void tmn(ll &x,ll y){if(y<x) x=y;} inline void tmx(ll &x,ll y){if(y>x) x=y;} ll qpow(ll aa,ll bb){ll res=1;while(bb){if(bb&1) res=resaa%mod;aa=aaaa%mod;bb>>=1;}return res;} ll qpow(ll aa,ll bb,ll md){ll res=1;while(bb){if(bb&1) res=(i128)resaa%md;aa=(i128)aaaa%md;bb>>=1;}return res;} inline ll Inv(ll x,ll md){return qpow(x,md-2,md);} inline ll Inv(ll x){return qpow(x,mod-2);} int ,; int n,k; int p[maxn],q[maxn]; ll ans; vector g[maxn],h[maxn]; int r1,r2; int siz[maxn],dfn[maxn],dfscnt; void dfs(int u) { siz[u]=1;dfn[u]=dfscnt; for(auto v:g[u]) dfs(v),siz[u]+=siz[v]; } struct bit { int c[maxn]; void clr() { for(int i=1;i<=n;i) c[i]=0; } int lowbit(int x){return x&(-x);} void ad(int x,int k){while(x<=n){c[x]+=k;x+=lowbit(x);}} int qry(int x){int res=0;while(x>=1){res+=c[x];x-=lowbit(x);}return res;} }T1,T2; int F[maxn],st[maxn],tp,sz[maxn],son[maxn]; vector e[maxn]; void dfs1(int u) { st[tp]=u;e[u].clear(); if(tp>k) F[u]=st[tp-k]; else F[u]=0; if(F[u]) e[F[u]].push_back(u); sz[u]=1;son[u]=0; for(auto v:h[u]) { dfs1(v); if(sz[v]>sz[son[u]]) son[u]=v; sz[u]+=sz[v]; } tp–; } void ins(int x,int k) { T1.ad(dfn[x],k);T1.ad(dfn[x]+siz[x],-k); T2.ad(dfn[x],k); } int qry(int x) { return T1.qry(dfn[x])+T2.qry(dfn[x]+siz[x]-1)-T2.qry(dfn[x]-1); } void dfs3(int u,int ty) { for(auto v:e[u]) { if(ty1) ans+=qry(v); else if(ty3) ins(v,-1); else if(ty==2) ins(v,1); } for(auto v:h[u]) dfs3(v,ty); } void dfs2(int u,int ty) { for(auto v:h[u]) if(v!=son[u]) dfs2(v,0); if(son[u]) { dfs2(son[u],1); for(auto v:h[u]) if(v!=son[u]) dfs3(v,1),dfs3(v,2); } for(auto v:e[u]) ins(v,1); if(!ty) dfs3(u,3); } void cal() { dfscnt=0;dfs(r1); T1.clr();T2.clr(); tp=0;dfs1(r2); dfs2(r2,0); } void solve() { cin>>n>>k; for(int i=1;i<=n;i) cin>>p[i]; for(int i=1;i<=n;i++) cin>>q[i]; for(int i=1;i<=n;i++) { if(!p[i]) r1=i; else g[p[i]].push_back(i); if(!q[i]) r2=i; else h[q[i]].push_back(i); } cal(); for(int i=1;i<=n;i++) swap(p[i],q[i]),swap(g[i],h[i]);swap(r1,r2); cal(); cout<<ans<<“\n”; } signed main() { freopen(“D.in”,“r”,stdin); freopen(“D.out”,“w”,stdout); ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); =1; //cin>>; while(–) { solve(); } return 0; } //by cristiano ronaldo dos santos aveiro #include <bits/stdc++.h> using namespace std; typedef long long ll; #define rep(i,s,t) for(register ll i = s;i <= t;++i) #define per(i,t,s) for(register ll i = t;i >= s;–i) const ll N = 1e6 + 5; ll n; ll k; ll rt1; ll rt2; ll top; ll idx; ll ans; ll p[N] = {}; ll q[N] = {}; ll fa[N] = {}; ll st[N] = {}; ll sz[N] = {}; ll siz[N] = {}; ll dfn[N] = {}; ll son[N] = {}; vector g[N]; vector g1[N]; vector g2[N]; class binary_indexed_tree { private: ll t[N] = {}; public: inline void init() { memset(t,0,sizeof(t)); } inline ll lowbit(ll x) { return x & (-x); } inline void upd(ll x,ll k) { while(x <= n) { t[x] += k; x += lowbit(x); } } inline ll qry(ll x) { ll ans = 0; while(x) { ans += t[x]; x -= lowbit(x); } return ans; } }; binary_indexed_tree t1; binary_indexed_tree t2; inline ll read() { ll x = 0; ll y = 1; char c = getchar(); while(c < ‘0’ || c > ‘9’) { if(c == ‘-’) y = -y; c = getchar(); } while(c >= ‘0’ && c <= ‘9’) { x = (x << 3) + (x << 1) + (c ^ ‘0’); c = getchar(); } return x * y; } inline void write(ll x) { if(x < 0) { putchar(‘-’); write(-x); return; } if(x > 9) write(x / 10); putchar(x % 10 + ‘0’); } inline void dfs(ll u) { siz[u] = 1; dfn[u] = ++idx; for(register auto v : g1[u]) { dfs(v); siz[u] += siz[v]; } } inline void dfs1(ll u) { st[++top] = u; g[u].clear(); if(top > k) fa[u] = st[top - k]; else fa[u] = 0; if(fa[u]) g[fa[u]].push_back(u); sz[u] = 1; son[u] = 0; for(auto v : g2[u]) { dfs1(v); if(sz[v] > sz[son[u]]) son[u] = v; sz[u] += sz[v]; } top–; } inline void ins(ll x,ll k) { t1.upd(dfn[x],k); t1.upd(dfn[x] + siz[x],-k); t2.upd(dfn[x],k); } inline ll query(ll x) { return t1.qry(dfn[x]) + t2.qry(dfn[x] + siz[x] - 1) - t2.qry(dfn[x] - 1); } inline void dfs3(ll u,ll k) { for(auto v : g[u]) { if(k == 1) ans += query(v); else if(k == 2) ins(v,1); else if(k == 3) ins(v,-1); } for(auto v : g2[u]) dfs3(v,k); } inline void dfs2(ll u,ll k) { for(auto v : g2[u]) if(v != son[u]) dfs2(v,0); if(son[u]) { dfs2(son[u],1); for(auto v : g2[u]) { if(v != son[u]) { dfs3(v,1); dfs3(v,2); } } } for(register auto v : g[u]) ins(v,1); if(!k) dfs3(u,3); } int main() { freopen(“D.in”,“r”,stdin); freopen(“D.out”,“w”,stdout); n = read(); k = read(); rep(i,1,n) p[i] = read(); rep(i,1,n) q[i] = read(); rep(i,1,n) { if(!p[i]) rt1 = i; else g1[p[i]].push_back(i); if(!q[i]) rt2 = i; else g2[q[i]].push_back(i); } idx = 0; dfs(rt1); t1.init(); t2.init(); top = 0; dfs1(rt2); dfs2(rt2,0); rep(i,1,n) { swap(p[i],q[i]); swap(g1[i],g2[i]); swap(rt1,rt2); } idx = 0; dfs(rt1); t1.init(); t2.init(); top = 0; dfs1(rt2); dfs2(rt2,0); write(ans); fclose(stdin); fclose(stdout); return 0; }针对以下问题,上述两段代码的功能有什么不同,请指出并修正第二段代码,使得第二段代码功能与第一段代码功能完全等价小丁的树 题目描述 小丁拥有两棵均具有 n n 个顶点,编号集合为 { 1 , 2 , ⋯   , n } {1,2,⋯,n} 的有根树 T 1 , T 2 T 1 ​ ,T 2 ​ ,现在他需要计算这两棵树的相似程度。 为了计算,小丁定义了对于一棵树 T T 和 T T 上两个不同顶点 u , v u,v 的距离函数 d T ( u , v ) d T ​ (u,v),其定义为 u , v u,v 两个点距离成为祖先关系有多近,具体来说,对于所有在 T T 上为祖先关系的点对 ( u ′ , v ′ ) (u ′ ,v ′ ), dis ⁡ ( u , u ′ ) + dis ⁡ ( v , v ′ ) dis(u,u ′ )+dis(v,v ′ ) 的最小值即为 d T ( u , v ) d T ​ (u,v) 的值,其中 dis ⁡ ( u , v ) dis(u,v) 表示 u , v u,v 在树 T T 上的唯一简单路径包含的边数,即 u , v u,v 的距离。 点对 ( u ′ , v ′ ) (u ′ ,v ′ ) 为祖先关系,当且仅当 u ′ u ′ 是 v ′ v ′ 的祖先或 v ′ v ′ 是 u ′ u ′ 的祖先。(注意,每个点都是自己的祖先) 小丁心里还有一个参数 k k,如果节点对 ( u , v ) (u,v) 满足以下条件,称之为不相似的节点对: 1 ≤ u < v ≤ n 1≤u<v≤n " d T 1 ( u , v ) 0 d T 1 ​ ​ (u,v)=0 且 d T 2 ( u , v ) k d T 2 ​ ​ (u,v)>k“ 或 " d T 2 ( u , v ) 0 d T 2 ​ ​ (u,v)=0 且 d T 1 ( u , v ) k d T 1 ​ ​ (u,v)>k​“ 小丁认为,不相似的节点对越多, T 1 T 1 ​ 和 T 2 T 2 ​ 就越不相似,你能告诉他总共有多少不相似的节点对吗? 输入格式 第一行两个整数 n , k n,k,表示 T 1 T 1 ​ 和 T 2 T 2 ​ 的节点数和参数 k k。 第二行 n n 个正整数 p 1 , p 2 , ⋯   , p n p 1 ​ ,p 2 ​ ,⋯,p n ​ , T 1 T 1 ​ 中节点 i i 的父节点为 p i p i ​ ,特别的,若 p i 0 p i ​ =0,则 i i 是 T 1 T 1 ​ 的根。 第三行 n n 个正整数 q 1 , q 2 , ⋯   , q n q 1 ​ ,q 2 ​ ,⋯,q n ​ , T 2 T 2 ​ 中节点 i i 的父节点为 q i q i ​ ,特别的,若 q i 0 q i ​ =0,则 i i 是 T 2 T 2 ​ 的根。 输出格式 一行一个整数,表示不相似的节点对总数。 样例 1 输入 5 0 0 1 1 2 3 5 3 1 1 0 样例 1 输出 4 样例 1 解释 ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 4 , 5 ) (2,3),(2,4),(2,5),(4,5) 为不相似的节点对。 其余样例见下发文件。 数据规模与约定 对于所有数据, 1 ≤ n ≤ 2 × 10 5 , 0 ≤ k < n , 0 ≤ p i , q i ≤ n 1≤n≤2×10 5 ,0≤k<n,0≤p i ​ ,q i ​ ≤n,且由 p i , q i p i ​ ,q i ​ 形成的是一棵 n n 个节点的有根树。 本题采用捆绑评测,你只有通过了一个子任务中所有测试点才能得到该子任务的分数。 Subtask 1(10pts): 1 ≤ n ≤ 100 1≤n≤100。 Subtask 2(20pts): 1 ≤ n ≤ 3000 1≤n≤3000。 Subtask 3(20pts): k 0 k=0。 Subtask 4(10pts): 0 ≤ k ≤ 20 0≤k≤20。 Subtask 5(40pts):无特殊限制。
最新发布
07-25
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值