Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, ..., N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.
Input Specification:
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.
Output Specification:
For each pop sequence, print in one line "YES" if it is indeed a possible pop sequence of the stack, or "NO" if not.
Sample Input:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
Sample Output:
YES
NO
NO
YES
NO
题目分析:
这道题的题意是给定一个出栈顺序,看这个出栈顺序是否能实现,能的话输出Yes,不能输出No。首行给出的三个元素分别代表栈的容量,序列元素个数,要查询的序列的条数。那要解这个题,肯定是要借助堆栈的,这里用了C++的stack直接建立了栈,C的同学也可以去网上看下它的用法。栈建好之后,我们依次将元素压入栈中,如果栈顶的元素和给定序列出栈元素相同的话,就将其抛出,直到其不相同或者栈为空为止。如果栈满了,且栈顶元素和给定序列对应出栈元素不同时,即无法pop出去,那么给定的出栈顺序肯定无法实现,输出No。另外,当循环退出,但是栈里还有元素的时候,说明给定出栈序列当中还有元素无法通过栈抛出,即这种出栈方式也无法实现,输出No。
代码如下:
#include <iostream>
#include <stack>
#include <algorithm>
using namespace std;
int main()
{
int stackMaxSize, num, cnt;
cin >> stackMaxSize >> num >> cnt;
while( cnt-- ) {
stack<int> a; //定义一个栈
int b[num];
int symbol = 1;
int n = 1, j = 0, i;
for( i=0; i<num; i++) { //记录给出的出栈顺序
cin >> b[i];
}
for( i=0; i<num; i++) {
a.push(n); //从1开始,将元素压入堆栈
n++;
while( a.top() == b[j] ) { //当栈顶的元素与给出的出栈元素相同时,出栈。
a.pop();
j++;
if(a.empty()) //当栈空了退出循环
break;
}
if(a.size() == stackMaxSize && a.top() != b[j] ) { //当栈满了,而且栈顶的元素和给出的出栈序列不匹配
symbol = 0; //说明这种出栈顺序不存在
break;
}
}
if(a.size() != 0) { //当栈里还有元素时,说明给定出栈顺序也无法实现
symbol = 0;
}
if( symbol ) {
cout << "YES" << endl;
} else {
cout << "NO" << endl;
}
}
return 0;
}