【UVA 10034 Freckles】& Kruskal & 最小生成树

In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad’s back to form a
picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley’s engagement
falls through.
Consider Dick’s back to be a plane with freckles at various (x, y) locations. Your job is to tell Richie
how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing
straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be
a sequence of connected lines from any freckle to any other freckle.
Input
The input begins with a single positive integer on a line by itself indicating the number of the cases
following, each of them as described below. This line is followed by a blank line, and there is also a
blank line between two consecutive inputs.
The first line contains 0 < n ≤ 100, the number of freckles on Dick’s back. For each freckle, a line
follows; each following line contains two real numbers indicating the (x, y) coordinates of the freckle.
Output
For each test case, the output must follow the description below. The outputs of two consecutive cases
will be separated by a blank line.
Your program prints a single real number to two decimal places: the minimum total length of ink
lines that can connect all the freckles.
Sample Input
1
3
1.0 1.0
2.0 2.0
2.0 4.0
Sample Output
3.41

题意 : 给出 n 个点的坐标,求把所有点都连接在一起的最小代价

思路 : Kruskal

AC代码:

#include<cstdio>
#include<cmath>
#include<deque>
#include<queue>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX = 1e5 + 10;
const int INF = 1e9 + 7;
typedef long long LL;
double x[110],y[110];
struct node{
    int a,b;
    double vl;
}st[110 * 110];
int f[110];
int fn(int x){ return f[x] == x ? f[x] : f[x] = fn(f[x]); }
void bc(int x,int y){
    int fx = fn(x),fy = fn(y);
    f[fy] = fx;
}
bool cmp(node i,node j) { return i.vl < j.vl; };
int main()
{
    int T,n;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        int nl = 0;
        for(int i = 1; i <= n; i++){
            f[i] = i;
            scanf("%lf %lf",&x[i],&y[i]);
            for(int j = 1; j < i; j++){
                double xx = x[i] - x[j];
                double yy = y[i] - y[j];
                node o;
                o.vl = sqrt(xx * xx + yy * yy);
                o.a = i,o.b = j;
                st[++nl] = o;
            }
        }
        sort(st + 1,st + nl + 1,cmp);
        double ans = 0;
        for(int i = 1; i <= nl; i++){
            int a = st[i].a,b =st[i].b;
            if(fn(a) != fn(b)) ans += st[i].vl,bc(a,b);
        }
        printf("%.2f\n",ans);
        if(T) puts("");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值