ME 588, Dynamics and Vibration

ME 588, Dynamics and Vibration

Homework 1

Distributed: 9/25/2024, Due: 10/11/2024

1. Consider a spring-mass system mounted on a spinning disk as shown in Fig. 1. The disk spins at constant angular velocity ω. Moreover, the disk has a diametrical slot, along which a block with mass m slides without friction. The spring connecting the mass and the disk center is a stiffening spring with a negligible free length. Therefore, the spring force Fs is given by Fs = kr(1 + αr2), where k and α are positive constants and r is the radial position of the block. The motion occurs in a horizontal plane, where gravity has no effects. Also, the disk is large enough so that the block will not fall out of the slot. Answer the following questions.

(a) Use the Newtonian approach (i.e., drawing free-body diagrams and applying Newton’s second law) to derive the equations of motion governing the radial position r.

(b) Determine all equilibrium positions.

(c) Derive the linearized equation of motion around each equilibrium position. Describe the condition so that the linearized equation of motion will give a stable and bounded response.

Figure 1: A spring-mass system in a spinning disk, version 1

Figure 2: Two point masses connected by a massless link

2. A rigid, massless rod of length r connects two particles of mass m1 and m2. Moreover, the two particles are sliding without friction on a circular arc of radius r in the gravity field; see Fig. 2. Let θ be the counterclockwise angular position from the vertical downward direction to the radial direction of particle m2. Moreover, let g be the gravitational acceleration. Use Newtonian mechanics to answer the following questions.

(a) Draw a free-body diagram of the two particles m1 and m2.

(b) Apply Newton’s second law to derive the equations of motion of the two particles m1 and m2. Eliminate constraint force(s) from your equations of motion to obtain a nonlinear, differential equation governing only the variable θ(t).

(c) Determine equilibrium positions θ0 of the system in terms of m1 and m2.

(d) Consider a special case m1 = m2 = m and focus on the equilibrium position with 0 < θ0 < 90◦. Derive linearized equations of motion around the equilibrium position.

3. Quiz Problem. Consider a two-block system moving in the gravity field shown in Fig. 3. The two blocks have the same mass m and are connected via a rigid, massless rod of length l. As a result of the gravitational acceleration g, block 1 moves horizontally and block 2 can only move vertically. There is no friction in this system. Moreover, block 1 is connected to a wall via a linear spring that has a spring constant k and a negligible free length. Therefore, the elongation of the spring is the position x of block 1 from the wall. For block 2, its horizontal distance to the wall is l and its vertical position is y as shown in Fig. 3. Use Newtonian mechanics to answer the following questions.

(a) Draw a free-body diagram of the two blocks.

(b) Apply Newton’s second law to derive the equations of motion of the two blocks. Elimi-nate constraint force(s) from your equations of motion to obtain a nonlinear, differential equation governing only the variable θ(t), where θ is the angle between the rigid rod and the vertical as shown in Fig. 3.

(c) Determine an algebraic equation governing equilibrium positions θ0 of the system. The equation should involve parameters such as mg and kl. Show that there is only one possible equilibrium for 0 < θ0 < 2/π.

(d) Derive a linearized equation of motion around the equilibrium position. If the two-block system is subjected to disturbance, will the system oscillate around the equilibrium position? Why?

Figure 3: A two-block system with a linear spring and a rigid rod

Figure 4: Linearization of the central force motion of a particle

4. The small particle of mass m and its restraining cord are spinning with an angular velocity ω on the horizontal surface of a smooth disk as shown in Fig. 4. The input force Fs(t) applied to the cord depends on time t. As a result, the angular velocity ω and the radial position r of the particle are not constant.

(a) Draw a free-body diagram of the particle and shows that the angular momentum is conserved. Therefore,

where θ is the angular position of the particle, the dot is the time derivative, and h0 is the initial angular momentum of the particle.

(b) Apply Newton’s second law in polar coordinates to derive the equation of motion. Sim plify the equation in the radial direction through use of (1) to obtain

(c) When Fs(t) = , a constant force, the particle will undergo a circular motion. Therefore, r(t)= and ω(t)= are both constant. Determine  and .

(d) When Fs(t) undergoes a small change from , e.g.,

the radial position of the particle will deviate from the circular orbit accordingly, i.e.,

Substitute (3) and (4) into (2) to linearize the equation. Show that the linearized equation takes the form. of

Also, specify the initial conditions η(0) and ˙η(0). Hint: First, you need to show that the binomial expansion of r−3 is

(e) If the force increment ∆F is constant, determine r(t) from (4) and (5). Does the response r(t) oscillate or decay? Plot r(t) with respect to time t.

【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)内容概要:本文档是一份关于“光伏并网逆变器扫频与稳定性分析”的Simulink仿真实现资源,重点复现博士论文中的阻抗建模与扫频法验证过程,涵盖锁相环和电流环等关键控制环节。通过构建详细的逆变器模型,采用小信号扰动方法进行频域扫描,获取系统输出阻抗特性,并结合奈奎斯特稳定判据分析并网系统的稳定性,帮助深入理解光伏发电系统在弱电网条件下的动态行为与失稳机理。; 适合人群:具备电力电子、自动控制理论基础,熟悉Simulink仿真环境,从事新能源发电、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握光伏并网逆变器的阻抗建模方法;②学习基于扫频法的系统稳定性分析流程;③复现高水平学术论文中的关键技术环节,支撑科研项目或学位论文工作;④为实际工程中并网逆变器的稳定性问题提供仿真分析手段。; 阅读建议:建议读者结合相关理论教材与原始论文,逐步运行并调试提供的Simulink模型,重点关注锁相环与电流控制器参数对系统阻抗特性的影响,通过改变电网强度等条件观察系统稳定性变化,深化对阻抗分析法的理解与应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值