ME 588, Dynamics and Vibration

ME 588, Dynamics and Vibration

Homework 1

Distributed: 9/25/2024, Due: 10/11/2024

1. Consider a spring-mass system mounted on a spinning disk as shown in Fig. 1. The disk spins at constant angular velocity ω. Moreover, the disk has a diametrical slot, along which a block with mass m slides without friction. The spring connecting the mass and the disk center is a stiffening spring with a negligible free length. Therefore, the spring force Fs is given by Fs = kr(1 + αr2), where k and α are positive constants and r is the radial position of the block. The motion occurs in a horizontal plane, where gravity has no effects. Also, the disk is large enough so that the block will not fall out of the slot. Answer the following questions.

(a) Use the Newtonian approach (i.e., drawing free-body diagrams and applying Newton’s second law) to derive the equations of motion governing the radial position r.

(b) Determine all equilibrium positions.

(c) Derive the linearized equation of motion around each equilibrium position. Describe the condition so that the linearized equation of motion will give a stable and bounded response.

Figure 1: A spring-mass system in a spinning disk, version 1

Figure 2: Two point masses connected by a massless link

2. A rigid, massless rod of length r connects two particles of mass m1 and m2. Moreover, the two particles are sliding without friction on a circular arc of radius r in the gravity field; see Fig. 2. Let θ be the counterclockwise angular position from the vertical downward direction to the radial direction of particle m2. Moreover, let g be the gravitational acceleration. Use Newtonian mechanics to answer the following questions.

(a) Draw a free-body diagram of the two particles m1 and m2.

(b) Apply Newton’s second law to derive the equations of motion of the two particles m1 and m2. Eliminate constraint force(s) from your equations of motion to obtain a nonlinear, differential equation governing only the variable θ(t).

(c) Determine equilibrium positions θ0 of the system in terms of m1 and m2.

(d) Consider a special case m1 = m2 = m and focus on the equilibrium position with 0 < θ0 < 90◦. Derive linearized equations of motion around the equilibrium position.

3. Quiz Problem. Consider a two-block system moving in the gravity field shown in Fig. 3. The two blocks have the same mass m and are connected via a rigid, massless rod of length l. As a result of the gravitational acceleration g, block 1 moves horizontally and block 2 can only move vertically. There is no friction in this system. Moreover, block 1 is connected to a wall via a linear spring that has a spring constant k and a negligible free length. Therefore, the elongation of the spring is the position x of block 1 from the wall. For block 2, its horizontal distance to the wall is l and its vertical position is y as shown in Fig. 3. Use Newtonian mechanics to answer the following questions.

(a) Draw a free-body diagram of the two blocks.

(b) Apply Newton’s second law to derive the equations of motion of the two blocks. Elimi-nate constraint force(s) from your equations of motion to obtain a nonlinear, differential equation governing only the variable θ(t), where θ is the angle between the rigid rod and the vertical as shown in Fig. 3.

(c) Determine an algebraic equation governing equilibrium positions θ0 of the system. The equation should involve parameters such as mg and kl. Show that there is only one possible equilibrium for 0 < θ0 < 2/π.

(d) Derive a linearized equation of motion around the equilibrium position. If the two-block system is subjected to disturbance, will the system oscillate around the equilibrium position? Why?

Figure 3: A two-block system with a linear spring and a rigid rod

Figure 4: Linearization of the central force motion of a particle

4. The small particle of mass m and its restraining cord are spinning with an angular velocity ω on the horizontal surface of a smooth disk as shown in Fig. 4. The input force Fs(t) applied to the cord depends on time t. As a result, the angular velocity ω and the radial position r of the particle are not constant.

(a) Draw a free-body diagram of the particle and shows that the angular momentum is conserved. Therefore,

where θ is the angular position of the particle, the dot is the time derivative, and h0 is the initial angular momentum of the particle.

(b) Apply Newton’s second law in polar coordinates to derive the equation of motion. Sim plify the equation in the radial direction through use of (1) to obtain

(c) When Fs(t) = , a constant force, the particle will undergo a circular motion. Therefore, r(t)= and ω(t)= are both constant. Determine  and .

(d) When Fs(t) undergoes a small change from , e.g.,

the radial position of the particle will deviate from the circular orbit accordingly, i.e.,

Substitute (3) and (4) into (2) to linearize the equation. Show that the linearized equation takes the form. of

Also, specify the initial conditions η(0) and ˙η(0). Hint: First, you need to show that the binomial expansion of r−3 is

(e) If the force increment ∆F is constant, determine r(t) from (4) and (5). Does the response r(t) oscillate or decay? Plot r(t) with respect to time t.

&lt;think&gt;好的,我需要帮助用户找到Sound and Vibration软件的安装方法或教程。首先,我要确认用户提到的具体软件名称,因为&ldquo;Sound and Vibration&rdquo;可能指多个不同的软件。根据提供的引用内容,用户提到了LabVIEW振动和声音分析软件,以及Octave的安装方法。可能用户将LabVIEW的某个工具包或模块称为Sound and Vibration软件,或者可能是指其他特定软件。 查看引用[2],里面提到LabVIEW振动、声音分析软件,提供源代码,用户可以修改代码,学习信号处理算法。这可能是指NI LabVIEW的Sound and Vibration Toolkit,这是National Instruments公司的一个工具包,用于声音和振动分析。因此,正确的安装步骤可能涉及安装LabVIEW及该工具包。 同时,引用[1]提到了安装Octave的命令,虽然Octave本身是数学软件,但可能与声音处理有关联。但用户的问题是关于Sound and Vibration软件的安装,所以重点应放在LabVIEW相关的内容上。 接下来,我需要整理如何安装LabVIEW及其Sound and Vibration Toolkit。通常,LabVIEW需要从NI官网下载安装程序,购买或获取试用许可证,然后通过NI Package Manager安装附加工具包。另外,用户可能需要从NI官网获取安装文件,或者通过其他途径,但官方途径是最推荐的。 另外,用户提供的引用中没有直接说明LabVIEW的安装步骤,但引用了Octave的安装命令。因此,可能需要补充LabVIEW的安装步骤,并指出Sound and Vibration Toolkit的安装方法。此外,如果用户提到的软件是其他如COMSOL Multiphysics的声学模块,或者其他开源软件,也需要考虑,但根据引用内容,重点应在LabVIEW上。 因此,回答应包括以下步骤: 1. 安装LabVIEW:从NI官网下载,运行安装程序,按向导完成。 2. 安装Sound and Vibration Toolkit:使用NI Package Manager添加该工具包。 3. 验证安装并参考教程。 同时,引用[2]提到该软件的代码开放性,可能用户需要相关资源,所以提供NI官方文档或社区链接会有帮助。此外,可能涉及声学模型设置(引用[3]中的内容),但安装步骤应单独说明。 需要确认是否有必要提及Octave,但根据用户的问题,可能不需要,除非该软件依赖Octave,但通常LabVIEW是独立平台。因此,可能引用[1]的Octave安装步骤不相关,但用户可能混淆了不同软件的安装方法,因此需要明确指出Sound and Vibration Toolkit的安装方法。 总结回答结构: - 确认软件的具体名称和来源(如NI LabVIEW Sound and Vibration Toolkit)。 - 分步骤说明安装LabVIEW和工具包的方法。 - 提供验证安装的方法和相关资源链接。&lt;/think&gt;要安装Sound and Vibration分析软件(如NI LabVIEW的**Sound and Vibration Toolkit**),可按照以下步骤操作: --- ### 1. 安装LabVIEW主程序 - **下载安装包**:访问National Instruments(NI)官网,下载LabVIEW安装程序。需注册账号并选择适合的版本(如社区版、试用版或付费版)[^2]。 - **运行安装向导**:双击安装文件,按提示完成LabVIEW主程序的安装。过程中需选择组件,确保勾选**NI Package Manager**(用于后续工具包管理)。 --- ### 2. 安装Sound and Vibration Toolkit - **打开NI Package Manager**:在LabVIEW安装完成后,启动NI Package Manager。 - **搜索工具包**:在搜索栏输入**Sound and Vibration Toolkit**,选择与LabVIEW版本匹配的版本。 - **安装依赖项**:根据提示安装必要的依赖库(如DAQmx驱动或分析库)。 - **完成安装**:等待工具包下载并自动集成到LabVIEW中。 --- ### 3. 验证安装 - 打开LabVIEW,新建VI(虚拟仪器),查看函数面板中是否包含**Sound and Vibration**分类(如频率分析、滤波器设计等模块)。 - 运行示例程序(通常位于`Help&raquo;Find Examples&raquo;Toolkits and Modules&raquo;Sound and Vibration`)以测试功能是否正常。 --- ### 其他安装方式(如使用Linux系统) 若需通过命令行安装相关工具(如Octave),可参考以下命令(但需注意Octave并非Sound and Vibration Toolkit的直接依赖): ```bash sudo apt-get update sudo apt-get install octave # 安装Octave数学计算工具[^1] ``` --- ### 相关资源 - **官方文档**:NI官网提供详细的[Sound and Vibration Toolkit用户手册](https://www.ni.com/docs/),包含安装指南和开发案例。 - **社区支持**:NI论坛或GitHub上的开源项目可获取代码示例[^2]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值