125.785 S1 Practice binary and panel data

125.785 S1 2024 -- Assignment 2 (Part A and Part B)

Due date: 18th October 2024

The assignment is 30% to the course assessment, including two parts:

Part A. Practice binary and panel data regressions (15%), Part B. Critical Reading (15%).

Part A Practice binary and panel data regressions (Head start codes of SAS are provided in Stream)

A-1. Binary Model practice (5% contribution to the course assessment)

Use the data provided (loanData_Assignment 2) to practice the binary model regression and analysis.

The variables used are defined as follows:

•      approve

=1 if the application is approved and 0 if not

•      loanamt

loan amt in thousands

•      price

purchase price

•      loanprc

loanamt/price

•      married

=1 if applicant married (and 0 for not married)

•      black

=1 if applicant is black (and 0 for others)

• white

=1 if applicant is white (and 0 for others)

A-1-1. Estimate the model below using OLS and discuss any problem in the variables used. (You may need to produce the basic statics of the used variables in the discussion.)

approve = a + β1* loanamt +  β2  *  price + β3*  loanprc + β4* married+  β5* black + β6* white

A-1-2. Estimate the above model using logit regression after making some treatment to any problem identified in the above requirement. (A-1-1).

Logit(approve=1)

= a + β1* loanamt1 + β2  *  price + β3  *  loanprc + β4  * married+  β5  * black + β6  * white

A-1-3. Interpret the statistical and economic meaning of β1  and β3.

A-1-4. Try the following two models and discuss the difference of the coefficients of β5  out of the two models.

Model 1:

Logit(approve=1)= a + β1* loanamt +  β2*  price + β3*  loanprc + β4* married+  β5* black + β6* white +e

Model 2:

Logit(approve=1)= a + β1* loanamt +  β2*  price + β3*  loanprc + β4* married+  β5* black + e

A-1-5. Use the above model 1 (logit) to estimate the probability of loan approval for a married white applicant with medians of other variables (loanamt1 price  loanprc).

A-1-6. What is the difference of approval rate between white and black applications based on the condition that there is no difference in other variables?

A-1-7 Write a conclusive summary of the Binary model testing results.

A-2. Panel data practice) (10% contribution to the course assessment)

Download the Stream provided data (wageFactors_assignment2. The two indicators for time cross section and time series are nr year.

The variables are defined as follows:

•      nr

person identifier

• year

1980 to 1987

• lwage

log(wage)

• exper

labor market experience

• hours

annual hours worked

• married

=1 if married (and 0 if not married)

• educ

years of schooling

• union

=1 if in union (and 0 if not in union)

A-2-1. Estimate the following model with OLS regression (pooled data regression):

lwage = a+ + β1* exper + β2* hours + β3* married + β4* educ + β5* union;

A-2-2. Estimate the above model using the time-fixed effect. Discuss the impact of experience (exper) on wage. Is the result different from the OLS model?

A-2-3. Test whether the time-fixed effect model or the OLS model is more appropriate.

A-2-4. Test whether the time-random effect model is appropriate.

A-2-5. Create the squared variable of the experience (exper2=exper *exper) and use the best

performance form. (among OLS, time-fixing and random-fixing) to estimate the following model:

lwage = a+ + β1 * exper + β2* hours + β3 * married + β4 * educ + β5 * union  + β6  *exper2;

A-2-6. Discuss again the impact of experience (exper) on wage based on the results in A-2-5.

A-2-6 Write a conclusive summary of the panel data regression results. The interested question is which panel data is most appropriate in the tested relation and how the working experience influence the level of wage in the labour market.

Part B. Critical Reading (15% to the course assessment).

Choose one of the following two articles and write a report of your selected one. The report should provide a summary on the research. The focus should be on describing and commenting on the econometric models and analyses used in the study. Specifically, you are expected to describe what is the specifical formula expressing the tested relation, and where (which table) and how the results are  reported and discussed. Additionally, discuss the common points, such as how the  data  is treated before testing, why the models are chosen, what are the relative advantages of the used models, and how these advantages are shown in the results, etc.). To improve your performance, you may make some critical comments on the testing methodology issues.

Word length should be about 1000 words.

Article 1:

Fang, Vivian W., Xuan Tian, and Sheri Tice, (2014), “ Does Stock Liquidity Enhance or Impede Firm Innovation?”, Journal of Finance, Vol. LXIX, no. 5, 2085-2125.

Article 2:

Nguyen, Thi Lam Anh, and Xuan Vinh Vo (2020), “Does corporate governance really matter for bank efficiency? Evidence from ASEAN countries”, Eurasian Economic Review, vol 10, no.4, 681–706.

Submission (to the Stream Drop-Box of the assignment):

A Word file, including the contents for part A and Part B (Same format as required in Assignment 1).

【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)内容概要:本文档是一份关于“光伏并网逆变器扫频与稳定性分析”的Simulink仿真实现资源,重点复现博士论文中的阻抗建模与扫频法验证过程,涵盖锁相环和电流环等关键控制环节。通过构建详细的逆变器模型,采用小信号扰动方法进行频域扫描,获取系统输出阻抗特性,并结合奈奎斯特稳定判据分析并网系统的稳定性,帮助深入理解光伏发电系统在弱电网条件下的动态行为与失稳机理。; 适合人群:具备电力电子、自动控制理论基础,熟悉Simulink仿真环境,从事新能源发电、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握光伏并网逆变器的阻抗建模方法;②学习基于扫频法的系统稳定性分析流程;③复现高水平学术论文中的关键技术环节,支撑科研项目或学位论文工作;④为实际工程中并网逆变器的稳定性问题提供仿真分析手段。; 阅读建议:建议读者结合相关理论教材与原始论文,逐步运行并调试提供的Simulink模型,重点关注锁相环与电流控制器参数对系统阻抗特性的影响,通过改变电网强度等条件观察系统稳定性变化,深化对阻抗分析法的理解与应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值