路径寻找问题可以归结为隐式图的遍历,他的任务是找到一条路径从初始状态到终止状态的最优路径,而不是像回溯法那样找到一个符合某些要求的解
经典的八数码问题:编号为1 ~ 8 的8个正方形滑块被摆成3行3列(有一个格子为空),每次可以把空格和相邻的四个滑块互换,给定初始和目标局面(0表示空格),
你的任务是计算从初始到目标位置最少移动的步数,如果无法达到则输出-1;
输入: 2 6 4 1 3 7 0 5 8
8 1 5 7 3 6 4 04
输出: 31
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<typeinfo>
#include<set>
using namespace std;
typedef int State[9]; // 定义状态
const int maxstate = 1000000;
State st[maxstate], goal;
int dist[maxstate];
const int dx[] = {-1, 1, 0, 0};
const int dy[] = {0, 0, -1, 1};
/*
set<int> vis;
void init_lookup_table()
{
vis.clear();
}
int try_to_insert(int s)
{
int v = 0;
for(int i = 0; i < 9; i++)
v = v * 10 + st[s][i];
if(vis.count(v)) return 0;
vis.insert(v);
return 1;
}
*/
const int hashsize = 1000003;
int head[hashsize], next[maxstate];
void init_lookup_table()
{
memset(head, 0, sizeof(head));
}
int hash(State & s)
{
int v = 0;
for(int i = 0; i < 9; i++)
v = v * 10 + s[i];
return v % hashsize;
}
int try_to_insert(int s)
{
int h = hash(st[s]);
int u = head[h];
while(u)
{
if(memcmp(st[u], st[s], sizeof(st[s])) == 0)
return 0;
u = next[u];
}
next[s] = head[h];
head[h] = s;
return 1;
}
//把一个一个的状态看作结点,
int bfs()
{
init_lookup_table();
int front = 1, rear = 2;
while(front < rear)
{
State& s = st[front];
if(memcmp(goal, s, sizeof(s)) == 0) return front; //找到目标
int z;
for(z = 0; z < 9; z++)
{
if(!s[z]) break; // find "space"
}
int x = z / 3, y = z % 3; // move "space"
for(int d = 0; d < 4; d++)
{
int newx = x + dx[d];
int newy = y + dy[d];
int newz = newx*3 + newy;
if(newx >= 0 && newx < 3 && newy >= 0 && newy < 3)
{
State & t = st[rear];
memcpy(&t, &s, sizeof(s));
t[newz] = s[z];
t[z] = s[newz];
dist[rear] = dist[front] + 1;
if(try_to_insert(rear)) rear++;
}
}
front++;
}
return 0;
}
int main()
{
for(int i = 0; i < 9; i++)
scanf("%d", &st[1][i]);
for(int i = 0; i < 9; i++)
scanf("%d", &goal[i]);
int ans = bfs();
if(ans > 0) printf("%d\n", dist[ans]);
else printf("-1\n");
return 0;
}