无脑dijkstra, 转问题为单源再处理(稀疏图用邻接表才是最优处理方式)
#include <stdio.h>
#include <string.h>
int dist[1001];
char k[1001];
int g[1001][1001];
int main()
{
int t, s, d;
int a, b, time;
int i;
int c;
int e;
int next;
int min_dist;
while (scanf("%d%d%d", &t, &s, &d) != EOF) {
memset(g, 0, 1001 * 1001 * sizeof(int));
for (i = 0; i < t; i++) {
scanf("%d%d%d", &a, &b, &time);
if (g[a][b] == 0 || g[a][b] > time)
g[a][b] = g[b][a] = time;
}
for (i = 0; i < s; i++) {
scanf("%d", &c);
g[0][c] = 1;
}
memset(k, 0, 1001 * sizeof(char));
memset(dist, 0x7f, 1001 * sizeof(int));
c = 0;
dist[0] = 0;
for (;;) {
k[c] = 1;
for (i = 1; i < 1001; i++) {
if (g[c][i] != 0)
if (dist[c] + g[c][i] < dist[i])
dist[i] = dist[c] + g[c][i];
}
next = 0x7f7f7f7f;
for (i = 1; i < 1001; i++) {
if (k[i])
continue;
if (dist[i] < next) {
next = dist[i];
c = i;
}
}
if (next == 0x7f7f7f7f)
break;
}
min_dist = 0x7f7f7f7f;
for (i = 0; i < d; i++) {
scanf("%d", &e);
if (dist[e] < min_dist)
min_dist = dist[e];
}
printf("%d\n", min_dist - 1);
}
return 0;
}
本文深入探讨了无脑迪杰斯特拉算法的优化策略,并将其应用于稀疏图的处理中,着重强调了邻接表作为最优处理方式的重要性。通过实例解析,详细阐述了算法的实现步骤及效率提升方法。
3659

被折叠的 条评论
为什么被折叠?



