Til the Cows Come Home—Dijkstra算法

该代码实现了一个Dijkstra算法的示例,用于解决图中两点间的最短路径问题。程序读取边的权重并更新距离数组,通过不断寻找未标记的节点来逐步构建最短路径。在给定的寒假集训练习中,该算法被用来计算从节点1到节点n的最短距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:寒假集训-最短路练习 - Virtual Judge (csgrandeur.cn)

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
typedef long long ll;
using namespace std;
int mxm=1<<29;
int mp[1005][1005];
int p[1005];
int d[1005];//到第i个点的路程是多少
int n,m;
void check(){
    memset(p,0,sizeof (p));
    for(int i=1;i<=n;i++){
        d[i]=mp[1][i];
    }//初始化从1开始的距离
    int v,min;
    for(int i=1;i<=n;i++){
        min=mxm;
        for(int j=1;j<=n;j++){
            if(p[j]==0&&d[j]<min){
                min=d[j];
                v=j;
            }
        }//找最小的距离的点
        p[v]=1;//标记找到的点
        for(int j=1;j<=n;j++){
            if(p[j]==0&&d[j]>min+mp[v][j])
            d[j]=min+mp[v][j];
        }
        
    }
    cout<<d[n]<<endl;
}
int main(){
    while(cin>>m>>n){
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                if(i==j) mp[i][j]==0;
                else {
                    mp[i][j]=mxm;
                }
            }
        }
        for(int i=0;i<m;i++){
            int a,b,c;
            cin>>a>>b>>c;
            if(mp[a][b]>c){
                mp[a][b]=mp[b][a]=c;
            }
        }
        check();

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值