图的理解:存储结构与邻接矩阵的Java实现

本文详细介绍了图的两种常见存储结构:邻接矩阵和邻接表,并提供了Java实现方式,包括插入结点、插入边、获取邻接结点等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

存储结构

要存储一个图,我们知道图既有结点,又有边,对于有权图来说,每条边上还带有权值。常用的图的存储结构主要有以下二种:

  • 邻接矩阵
  • 邻接表

邻接矩阵

我们知道,要表示结点,我们可以用一个一维数组来表示,然而对于结点和结点之间的关系,则无法简单地用一维数组来表示了,我们可以用二维数组来表示,也就是一个矩阵形式的表示方法。

我们假设A是这个二维数组,那么A中的一个元素aij不仅体现出了结点vi和结点vj的关系,而且aij的值正可以表示权值的大小。

以下是一个无向图的邻接矩阵表示示例:


从上图我们可以看到,无向图的邻接矩阵是对称矩阵,也一定是对称矩阵。且其左上角到右下角的对角线上值为零(对角线上表示的是相同的结点)
有向图的邻接矩阵是怎样的呢?


对于带权图,aij的值可用来表示权值的大小,上面两张图是不带权的图,因此它们值都是1。

邻接表

我们知道,图的邻接矩阵存储方法用的是一个n*n的矩阵,当这个矩阵是稠密的矩阵(比如说当图是完全图的时候),那么当然选择用邻接矩阵存储方法。
可是如果这个矩阵是一个稀疏的矩阵呢,这个时候邻接表存储结构就是一种更节省空间的存储结构了。
对于上文中的无向图,我们可以用邻接表来表示,如下:


每一个结点后面所接的结点都是它的邻接结点。

邻接矩阵与邻接表的比较

当图中结点数目较小且边较多时,采用邻接矩阵效率更高。
当节点数目远大且边的数目远小于相同结点的完全图的边数时,采用邻接表存储结构更有效率。

邻接矩阵的Java实现

邻接矩阵模型类的类名为AMWGraph.java,能够通过该类构造一个邻接矩阵表示的图,且提供插入结点,插入边,取得某一结点的第一个邻接结点和下一个邻接结点。

模型类

import java.util.ArrayList;
import java.util.LinkedList;

public class AMWGraph {
    private ArrayList vertexList;//存储点的链表
    private int[][] edges;//邻接矩阵,用来存储边
    private int numOfEdges;//边的数目

    public AMWGraph(int n) {
        //初始化矩阵,一维数组,和边的数目
        edges=new int[n][n];
        vertexList=new ArrayList(n);
        numOfEdges=0;
    }

    //得到结点的个数
    public int getNumOfVertex() {
        return vertexList.size();
    }

    //得到边的数目
    public int getNumOfEdges() {
        return numOfEdges;
    }

    //返回结点i的数据
    public Object getValueByIndex(int i) {
        return vertexList.get(i);
    }

    //返回v1,v2的权值
    public int getWeight(int v1,int v2) {
        return edges[v1][v2];
    }

    //插入结点
    public void insertVertex(Object vertex) {
        vertexList.add(vertexList.size(),vertex);
    }

    //插入边
    public void insertEdge(int v1,int v2,int weight) {
        edges[v1][v2]=weight;
        numOfEdges++;
    }

    //删除结点
    public void deleteEdge(int v1,int v2) {
        edges[v1][v2]=0;
        numOfEdges--;
    }

    //得到第一个邻接结点的下标
    public int getFirstNeighbor(int index) {
        for(int j=0;j<vertexList.size();j++) {
            if (edges[index][j]>0) {
                return j;
            }
        }
        return -1;
    }

    //根据前一个邻接结点的下标来取得下一个邻接结点
    public int getNextNeighbor(int v1,int v2) {
        for (int j=v2+1;j<vertexList.size();j++) {
            if (edges[v1][j]>0) {
                return j;
            }
        }
        return -1;
    }
}


测试类


public class TestAMWGraph {
    public static void main(String args[]) {
        int n=4,e=4;//分别代表结点个数和边的数目
        String labels[]={"V1","V1","V3","V4"};//结点的标识
        AMWGraph graph=new AMWGraph(n);
        for(String label:labels) {
            graph.insertVertex(label);//插入结点
        }
        //插入四条边
        graph.insertEdge(0, 1, 2);
        graph.insertEdge(0, 2, 5);
        graph.insertEdge(2, 3, 8);
        graph.insertEdge(3, 0, 7);

        System.out.println("结点个数是:"+graph.getNumOfVertex()); // 4
        System.out.println("边的个数是:"+graph.getNumOfEdges());  // 4

        graph.deleteEdge(0, 1);//删除<V1,V2>边
        System.out.println("删除<V1,V2>边后...");
        System.out.println("结点个数是:"+graph.getNumOfVertex());// 4
        System.out.println("边的个数是:"+graph.getNumOfEdges()); // 3
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值