Manacher

本文深入探讨Manacher算法,用于解决给定字符串中最长回文子串的问题。通过字符串扩展和回文半径的概念,阐述算法如何在O(N)的时间复杂度内找到答案。同时解释了回文半径、回文直径和BFPRT等关键概念,适合对算法感兴趣的读者学习。

Manacher算法

给定一个字符串str,返回str中最长回文子串的长度
eg: str = "133331"有奇回文有偶回文。
str扩展 str’ = “#1#3#3#3#3#1#” O(N2)

概念
回文半径
回文直径

从左向右求解

  1. 将值记录在回文半径数组中P_arr[]
  2. 回文半径的最右边界R
  3. C:2的中心

BFPRT

无序数组找到最小的第k个数 O(n)

下载前可以先看下教程 https://pan.quark.cn/s/a426667488ae 标题“仿淘宝jquery图片左右切换带数字”揭示了这是一个关于运用jQuery技术完成的图片轮播机制,其特色在于具备淘宝在线平台普遍存在的图片切换表现,并且在整个切换环节中会展示当前图片的序列号。 此类功能一般应用于电子商务平台的产品呈现环节,使用户可以便捷地查看多张商品的照片。 说明中的“NULL”表示未提供进一步的信息,但我们可以借助标题来揣摩若干核心的技术要点。 在构建此类功能时,开发者通常会借助以下技术手段:1. **jQuery库**:jQuery是一个应用广泛的JavaScript框架,它简化了HTML文档的遍历、事件管理、动画效果以及Ajax通信。 在此项目中,jQuery将负责处理用户的点击动作(实现左右切换),并且制造流畅的过渡效果。 2. **图片轮播扩展工具**:开发者或许会采用现成的jQuery扩展,例如Slick、Bootstrap Carousel或个性化的轮播函数,以达成图片切换的功能。 这些扩展能够辅助迅速构建功能完善的轮播模块。 3. **即时数字呈现**:展示当前图片的序列号,这需要通过JavaScript或jQuery来追踪并调整。 每当图片切换时,相应的数字也会同步更新。 4. **CSS美化**:为了达成淘宝图片切换的视觉效果,可能需要设计特定的CSS样式,涵盖图片的排列方式、过渡效果、点状指示器等。 CSS3的动画和过渡特性(如`transition`和`animation`)在此过程中扮演关键角色。 5. **事件监测**:运用jQuery的`.on()`方法来监测用户的操作,比如点击左右控制按钮或自动按时间间隔切换。 根据用户的交互,触发相应的函数来执行...
垃圾实例分割数据集 一、基础信息 • 数据集名称:垃圾实例分割数据集 • 图片数量: 训练集:7,000张图片 验证集:426张图片 测试集:644张图片 • 训练集:7,000张图片 • 验证集:426张图片 • 测试集:644张图片 • 分类类别: 垃圾(Sampah) • 垃圾(Sampah) • 标注格式:YOLO格式,包含实例分割的多边形点坐标,适用于实例分割任务。 • 数据格式:图片文件 二、适用场景 • 智能垃圾检测系统开发:数据集支持实例分割任务,帮助构建能够自动识别和分割图像中垃圾区域的AI模型,适用于智能清洁机器人、自动垃圾桶等应用。 • 环境监控与管理:集成到监控系统中,用于实时检测公共区域的垃圾堆积,辅助环境清洁和治理决策。 • 计算机视觉研究:支持实例分割算法的研究和优化,特别是在垃圾识别领域,促进AI在环保方面的创新。 • 教育与实践:可用于高校或培训机构的AI课程,作为实例分割技术的实践数据集,帮助学生理解计算机视觉应用。 三、数据集优势 • 精确的实例分割标注:每个垃圾实例都使用详细的多边形点进行标注,确保分割边界准确,提升模型训练效果。 • 数据多样性:包含多种垃圾物品实例,覆盖不同场景,增强模型的泛化能力和鲁棒性。 • 格式兼容性强:YOLO标注格式易于与主流深度学习框架集成,如YOLO系列、PyTorch等,方便研究人员和开发者使用。 • 实际应用价值:直接针对现实世界的垃圾管理需求,为自动化环保解决方案提供可靠数据支持,具有重要的社会意义。
<think>嗯,用户想要了解Manacher算法的代码模板或者实现示例。首先,我需要回忆一下Manacher算法的基本思路。记得这个算法是用来找出字符串中最长回文子串的,时间复杂度是线性的O(n)。用户可能已经了解过暴力解法或者其他的优化方法,但想看看具体的代码实现。 首先,用户提到的几个引用中有提到Manacher算法是在BF算法基础上优化的,所以可能需要先简要说明一下这个算法的核心思想。比如预处理字符串,插入特殊字符(比如#)来统一处理奇偶长度的回文,以及利用对称性来减少重复计算。 接下来,用户需要代码模板。根据引用中的示例,比如引用[2]和[4],这两个可能提供了不同的实现方式。需要整合这些代码,确保语法正确,并且符合用户要求的格式,比如独立公式用$$...$$,行内用$...$。不过用户的问题主要是代码示例,所以重点在代码部分。 需要注意的是,用户可能希望代码有注释,解释每一步的作用。比如预处理部分,插入字符,然后初始化变量如max_r和pos,然后遍历处理每个字符的位置。同时,在代码中处理三种情况:对称点的半径是否超过当前右边界,从而决定初始r[i]的值。然后扩展半径,直到无法继续扩展为止,最后更新max_r和pos的位置。 另外,引用[4]中的代码可能用的是另一种实现方式,比如使用辅助变量aux和len来计算半径。不过Manacher的标准实现通常使用一个数组p来记录每个中心的半径,以及维护当前最右的边界和对应的中心。需要确保代码的正确性,比如处理预处理后的字符串,以及最后计算原字符串中的起始位置和长度。 可能还需要比较不同引用的实现方式,选择最符合标准Manacher算法的代码模板。例如,引用[2]中的代码可能更接近标准模板,而引用[4]的代码可能更简略但效率可能不同。需要确保提供的代码是正确的,并且有足够的注释帮助用户理解。 另外,用户可能希望了解如何将预处理后的长度转换回原字符串的位置,比如在示例中的start和maxLen的计算。这部分需要详细解释,因为这是容易出错的地方。例如,预处理后的字符串长度是2n+1,所以原字符串中的起始位置是(start - maxLen)/2,长度是maxLen。 最后,生成相关问题的时候,需要围绕Manacher算法的不同方面,比如预处理的作用、时间复杂度的分析、与暴力解法的区别、应用场景等。这些问题可以帮助用户更深入理解算法。 在检查过程中,需要确保LaTeX格式的正确性,比如行内公式是否正确使用$符号,是否有遗漏。例如,在提到时间复杂度O(n)时,需要用$O(n)$。同时,独立公式如回文半径的计算可能需要用$$...$$,但根据用户示例,可能这部分不需要公式,主要代码展示。 总结步骤:1. 简要介绍Manacher算法;2. 提供代码模板,包括预处理、循环处理每个字符、扩展半径、更新变量;3. 解释代码中的关键步骤;4. 给出应用示例和结果转换;5. 生成相关问题。</think>### Manacher算法实现示例 Manacher算法用于在$O(n)$时间内查找最长回文子串,核心是通过对称性减少重复计算[^1]。以下是代码模板及关键步骤解释: #### 代码模板 ```python def manacher(s): # 预处理,插入特殊字符 t = '#' + '#'.join(s) + '#' n = len(t) p = [0] * n # 记录每个中心的回文半径 max_right = 0 # 当前最大右边界 center = 0 # 最大右边界的中心 max_len = 0 # 最长回文子串长度 start = 0 # 最长回文子串起始位置 for i in range(n): # 根据对称性初始化半径 if i < max_right: mirror = 2 * center - i p[i] = min(max_right - i, p[mirror]) # 尝试扩展半径 left = i - p[i] - 1 right = i + p[i] + 1 while left >= 0 and right < n and t[left] == t[right]: p[i] += 1 left -= 1 right += 1 # 更新最大右边界和对应中心 if i + p[i] > max_right: max_right = i + p[i] center = i # 更新最长回文记录 if p[i] > max_len: max_len = p[i] start = (i - max_len) // 2 # 转换为原字符串的位置 return s[start : start + max_len] ``` #### 关键步骤说明 1. **预处理**:将原字符串$s$转换为$t$,插入分隔符`#`统一奇偶长度回文处理[^2]。例如,`abc`变为`#a#b#c#`。 2. **半径初始化**:若当前点$i$在已知最大右边界内,则利用对称点$j=2 \cdot center - i$的半径初始化$p[i]$[^5]。 3. **扩展半径**:从$p[i]$的初始值出发,向左右扩展,直到字符不匹配。 4. **结果转换**:最长回文子串在原字符串中的起始位置为$(i - max\_len) // 2$,长度为$max\_len$[^4]。 #### 示例运行 输入`abc1234321ab`,预处理后字符串为`#a#b#c#1#2#3#4#3#2#1#a#b#`。算法计算得到最长回文子串为`23432`,对应原字符串的起始位置和长度[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值