HDU-4190B - Distributing Ballot Boxes

Today, besides SWERC'11, another important event is taking place in Spain which rivals it in importance: General Elections. Every single resident of the country aged 18 or over is asked to vote in order to choose representatives for the Congress of Deputies and the Senate. You do not need to worry that all judges will suddenly run away from their supervising duties, as voting is not compulsory. 
 The administration has a number of ballot boxes, those used in past elections. Unfortunately, the person in charge of the distribution of boxes among cities was dismissed a few months ago due to nancial restraints. As a consequence, the assignment of boxes to cities and the lists of people that must vote in each of them is arguably not the best. Your task is to show how efficiently this task could have been done. 
 The only rule in the assignment of ballot boxes to cities is that every city must be assigned at least one box. Each person must vote in the box to which he/she has been previously assigned. Your goal is to obtain a distribution which minimizes the maximum number of people assigned to vote in one box. 
 In the first case of the sample input, two boxes go to the fi rst city and the rest to the second, and exactly 100,000 people are assigned to vote in each of the (huge!) boxes in the most efficient distribution. In the second case, 1,2,2 and 1 ballot boxes are assigned to the cities and 1,700 people from the third city will be called to vote in each of the two boxes of their village, making these boxes the most crowded of all in the optimal assignment.

Input

The fi rst line of each test case contains the integers N (1<=N<=500,000), the number of cities, and B(N<=B<=2,000,000), the number of ballot boxes. Each of the following N lines contains an integer a i,(1<=a i<=5,000,000), indicating the population of the i th city. 
 A single blank line will be included after each case. The last line of the input will contain -1 -1 and should not be processed.

Output

For each case, your program should output a single integer, the maximum number of people assigned to one box in the most efficient assignment.

题意:给你n个城市,m个箱子,现在求最小的投票箱容纳器

分析:如果n和m相等,那么容量最小肯定为人口数最多的那个,如果n<m,必须把所有箱子用完,那么箱子越多,平均值越小。
可以用二分枚举人口数量作为投票箱的容量,如果枚举后所需要的箱子数目小于m个,说明容量还可以再小,如果箱子数大于m个,说明最小容量就在当前容量到最大容量值之间

代码:

#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int s[5005000],n,m;
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        if(n==-1&&m==-1)
            break;
        int maxx=-1;
        for(int i=0;i<n;i++)
        {
            scanf("%d",&s[i]);
            maxx=max(maxx,s[i]);    //找最大的人口数
        }
        int l=0,r=maxx,t;
        while(l<=r)                 //枚举
        {
            int mid=(l+r)/2;        //平均容量
            t=0;
            for(int i=0;i<n;i++)    //遍历一遍
            {
                if(mid>=s[i])       //如果该容量对该城市可行,+1
                    t+=1;
                else
                    t+=(s[i]+mid-1)/mid;  //该容量对该城市不够,那么+2
            }
            if(t>m)            //如果枚举出来箱子大于m个
                l=mid+1;
            else                //箱子数小于m个
                r=mid-1;
        }
        printf("%d\n",l);
    }
}

### HDU 4190 编程问题解析 针对HDU-4190这一特定编程挑战,该题目属于动态规划(DP)类问题[^3]。这类问题通常涉及寻找最优路径或者计算最优化的结果,在给定约束条件下实现目标最大化或最小化。 对于此题目的具体描述提到的是一个数塔结构,其中要求从顶部到底部移动,并且每次只能前往相邻节点,最终目的是使得所经过节点数值总和达到最大值。解决此类问题的关键在于理解如何有效地利用已知条件来构建解决方案: #### 动态规划算法设计 为了高效求解这个问题,可以采用自底向上的方法来进行动态规划处理。通过定义状态转移方程,逐步累积中间结果直至获得全局最优解。 ```python def max_sum_path(triangle): n = len(triangle) # 初始化dp数组用于存储各层的最大累加和 dp = [[0]*i for i in range(1, n+1)] # 设置起点即三角形顶端元素作为初始值 dp[0][0] = triangle[0][0] # 填充dp表 for level in range(1, n): for pos in range(level + 1): if pos == 0: dp[level][pos] = dp[level - 1][pos] + triangle[level][pos] elif pos == level: dp[level][pos] = dp[level - 1][pos - 1] + triangle[level][pos] else: dp[level][pos] = max(dp[level - 1][pos], dp[level - 1][pos - 1]) + triangle[level][pos] return max(dp[-1]) triangle = [ [2], [3, 4], [6, 5, 7], [4, 1, 8, 3] ] print(max_sum_path(triangle)) ``` 上述代码实现了基于输入参数`triangle`(表示数塔的数据结构)的函数`max_sum_path()`,它返回从顶至底所能得到的最大路径和。这里采用了二维列表形式保存每一级的最佳选择情况,从而保证能够快速访问并更新所需的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值