机器学习训练营LightGBM学习笔记

本文详细介绍了LightGBM的原理与优化特性,如直方图算法、Leaf-wise生长策略、单边梯度采样和互斥特征捆绑。通过英雄联盟数据集展示了LightGBM的实现过程,包括参数调优,如num_leaves、min_data_in_leaf和max_depth等,以及针对训练速度、准确率和过拟合的策略。最后,文中提出了LightGBM与XGBoost的对比和学习思考。
  • 学习知识点概要

1.LightGBM

2.LightGBM的实现

  • 学习内容

1.LightGBM

LightGBM可以看作是XGBoost的升级豪华版,在获得与XGBoost近似精度的同时,又提供了更快的训练速度与更少的内存消耗。

其优缺点和XGBoost相似

LightGBM底层实现了GBDT算法,并且添加了一系列的新特性:

  1. 基于直方图算法进行优化,使数据存储更加方便、运算更快、鲁棒性强、模型更加稳定等。
  2. 提出了带深度限制的 Leaf-wise 算法,抛弃了大多数GBDT工具使用的按层生长 (level-wise) 的决策树生长策略,而使用了带有深度限制的按叶子生长策略,可以降低误差,得到更好的精度。
  3. 提出了单边梯度采样算法,排除大部分小梯度的样本,仅用剩下的样本计算信息增益,它是一种在减少数据量和保证精度上平衡的算法。
  4. 提出了互斥特征捆绑算法,高维度的数据往往是稀疏的,这种稀疏性启发我们设计一种无损的方法来减少特征的维度。通常被捆绑的特征都是互斥的(即特征不会同时为非零值,像one-hot),这样两个特征捆绑起来就不会丢失信息。

LightGBM是基于CART树的集成模型,它的思想是串联多个决策树模型共同进行决策。

2.LightGBM的实现

采用了英雄联盟的数据

对数据进行了,分布分析等来判断特征的影响

比较详细的调参

  1. num_leaves参数 这是控制树模型复杂度的主要参数,一般的我们会使num_leaves小于(2的max_depth次方),以防止过拟合。由于LightGBM是leaf-wise建树与XGBoost的depth-wise建树方法不同,num_leaves比depth有更大的作用。、

  2. min_data_in_leaf 这是处理过拟合问题

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值