hot100-动态规划

70. 爬楼梯

解法一、dp

class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n+1];
        dp[0] = 1;
        dp[1] = 1;
        for(int i = 2;i <= n;i++){
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
}

118. 杨辉三角

解法一、dp

class Solution {
    public List<List<Integer>> generate(int numRows) {
        int[][] num = new int[numRows][numRows];
        num[0][0] = 1;
        List<List<Integer>> res = new LinkedList<>();
        List<Integer> t = new LinkedList<>();
        t.add(1);
        res.add(t);
        for(int i = 1;i < numRows;i++){
            num[i][0] = 1;
            num[i][i] = 1;
            t = new LinkedList<>();
            t.add(1);
            for(int j = 1;j < i;j++){
                num[i][j] = num[i-1][j-1] + num[i-1][j];
                t.add(num[i][j]);
            }
            t.add(1);
            res.add(t);
        }
        return res;
    }
}

198. 打家劫舍

 解法一、dp

状态转移方程:偷了上一个或者偷了这个与上上个

class Solution {
    public int rob(int[] nums) {
        int n = nums.length;
        int[] dp = new int[n];
        dp[0] = nums[0];
        for(int i = 1;i < n;i++){
            dp[i] = i > 1 ? Math.max(dp[i-1],dp[i-2] + nums[i]) : Math.max(dp[i-1],nums[i]);
        }
        return dp[n-1];
    }
}

279. 完全平方数

 解法一

class Solution {
    public int numSquares(int n) {
        int[] dp = new int[n + 1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[0] = 0;

        for (int i = 1; i * i <= n; i++) {
            int square = i * i;
            for (int j = square; j <= n; j++) {
                dp[j] = Math.min(dp[j], dp[j - square] + 1);
            }
        }
        return dp[n];
    }
}

322. 零钱兑换

 解法一、多数组

class Solution {
    public int coinChange(int[] coins, int amount) {
        int n = coins.length;
        int[][] dp = new int[n+1][amount+1];
        Arrays.fill(dp[0],Integer.MAX_VALUE / 2);
        dp[0][0] = 0;
        for(int i = 0;i < n;i++){
            for(int j = 0;j <= amount;j++){
                if(j < coins[i]){
                    dp[i+1][j] = dp[i][j];
                }else{
                    dp[i+1][j] = Math.min(dp[i][j],dp[i+1][j - coins[i]]+1);
                }
            }
        }
        return dp[n][amount] >= Integer.MAX_VALUE/2 ? -1 : dp[n][amount];
    }
}

解法二、双数组

class Solution {
    public int coinChange(int[] coins, int amount) {
        int n = coins.length;
        int[][] dp = new int[2][amount+1];
        Arrays.fill(dp[0],Integer.MAX_VALUE / 2);
        dp[0][0] = 0;
        for(int i = 0;i < n;i++){
            for(int j = 0;j <= amount;j++){
                if(j < coins[i]){
                    dp[(i+1)%2][j] = dp[i%2][j];
                }else{
                    dp[(i+1)%2][j] = Math.min(dp[i%2][j],dp[(i+1)%2][j - coins[i]]+1);
                }
            }
        }
        return dp[n%2][amount] >= Integer.MAX_VALUE/2 ? -1 : dp[n%2][amount];
    }
}

解法三、单数组

class Solution {
    public int coinChange(int[] coins, int amount) {
        int n = coins.length;
        int[] dp = new int[amount+1];
        Arrays.fill(dp,Integer.MAX_VALUE / 2);
        dp[0] = 0;
        for(int i = 0;i < n;i++){
            for(int j = coins[i];j <=amount;j++){
                if(j >= coins[i]){
                    dp[j] = Math.min(dp[j],dp[j - coins[i]]+1);
                }
            }
        }
        return dp[amount] >= Integer.MAX_VALUE/2 ? -1 : dp[amount];
    }
}

139. 单词拆分

 解法一、

dp[j]的含义:0-j可以拆分并且从wordDict找到

class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        int n = s.length();
        boolean[] dp = new boolean[n+1];
        dp[0] = true;
        for(int i = 0;i < n;i++){
            for(int j = i+1;j <= n;j++){
                if(dp[i] && isE(s.substring(i,j),wordDict)){
                    dp[j]= true;
                }
            }
        }
        return dp[n];
    }
    private boolean isE(String s,List<String> wordDict){
        for(String tmp : wordDict){
            if(s.equals(tmp))return true;
        }
        return false;
    }
}

300. 最长递增子序列

 解法一

class Solution {
    public int lengthOfLIS(int[] nums) {
        int n = nums.length;
        int[] dp = new int[n];
        int ans = 0;
        for(int i = 0;i < n;i++){
            for(int j = 0;j < i;j++){
                if(nums[j] < nums[i]){
                    dp[i] = Math.max(dp[j],dp[i]);
                }
            }
            ans = Math.max(ans,++dp[i]);
        }
        return ans;
    }
}

152. 乘积最大子数组

 解法一

class Solution {
    public int maxProduct(int[] nums) {
        int n = nums.length;
        int ans = nums[0];
        int[] fMax = new int[n];
        int[] fMin = new int[n];
        fMin[0] = fMax[0] = nums[0];
        for(int i = 1;i < n;i++){
            fMax[i] = Math.max(Math.max(fMax[i - 1] * nums[i], fMin[i - 1] * nums[i]), nums[i]);
            fMin[i] = Math.min(Math.min(fMax[i - 1] * nums[i], fMin[i - 1] * nums[i]), nums[i]);
            ans = Math.max(fMax[i],ans);
        }
        return ans;
    }
}

32. 最长有效括号

 解法一

class Solution {
    public int longestValidParentheses(String s) {
        int n = s.length(),ans = 0;
        char[] c = s.toCharArray();
        int[] dp = new int[n];
        //dp[i][j] = 从i到j的括号有效
        for(int i = 1;i < n;i++){
            if(c[i] == ')'){
                if(c[i-1] == '('){
                    dp[i] =  2;
                    if(i-2 > 0)dp[i]+=dp[i-2];
                }
                if(c[i-1] == ')' && i - dp[i-1] - 1 >= 0 && c[i - dp[i-1] - 1] == '(' ){
                    dp[i] = dp[i-1] + 2;
                    if(i - dp[i-1] - 2 >0)dp[i]+=dp[i - dp[i-1] - 2];
                }
            }
            ans = Math.max(ans,dp[i]);
        }
        return ans;
    }
}

62. 不同路径

 解法一

class Solution {
    public int uniquePaths(int m, int n) {
       int[][] dp = new int[m+1][n+1];
       dp[0][1] = 1;
       for(int i = 0;i < m;i++){
        for(int j = 0;j < n;j++){
            dp[i+1][j+1] = dp[i+1][j] + dp[i][j+1];
        }
       }
       return dp[m][n];
    }
}

64. 最小路径和

 解法一、

class Solution {
    public int minPathSum(int[][] grid) {
        int m = grid.length,n = grid[0].length;
        int [][] dp = new int[m][n];
        dp[0][0] = grid[0][0];
        for(int i = 1;i < m;i++){
            dp[i][0] = dp[i-1][0] + grid[i][0];
        }
        for(int j = 1;j < n;j++){
            dp[0][j] = dp[0][j-1] + grid[0][j];
        }
        for(int i = 1;i < m;i++){
            for(int j = 1;j < n;j++){
                dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1] )+ grid[i][j];
            }
        }
        return dp[m-1][n-1];
    }

}

5. 最长回文子串

 解法一

class Solution {
    public String longestPalindrome(String s) {
        char[] c = s.toCharArray();
        int n = c.length;
        int begin = 0, end = 0;
        boolean[][] dp = new boolean[n][n];
        for(int i = 0 ;i < n;i++){
            for(int j = i;j >=0;j--){
                if(c[i]==c[j] && (i - j <= 1 || dp[i-1][j+1] )){
                    dp[i][j] = true;
                    if(i - j  > end - begin){
                        begin = j;
                        end = i;
                    }
                }
            }
        }
        return s.substring(begin,end+1);
    }
}

1143. 最长公共子序列

 解法一

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(),n = text2.length();
        int[][] dp = new int [m+1][n+1];
        for(int i = 0; i < m;i++){
            for(int j = 0; j < n;j++){
                if(text1.charAt(i) == text2.charAt(j)){
                    dp[i+1][j+1] = dp[i][j] + 1 ;
                }else{
                    dp[i+1][j+1] = Math.max(dp[i][j+1], dp[i+1][j]);
                }
            }
        }
        return dp[m][n];
    }
}

72. 编辑距离

 解法一、

class Solution {
        public int minDistance(String word1, String word2) {
        int m = word1.length(),n = word2.length();
        int[][] dp = new int[m+1][n+1];
        for(int i = 0;i <= m;i++){
            dp[i][0] = i;
        }
        for(int j = 0;j <= n;j++){
            dp[0][j] = j;
        }
        for(int i = 0;i < m;i++){
            for(int j = 0;j < n;j++){
                dp[0][j+1] = j+1;
                if(word1.charAt(i) == word2.charAt(j)){
                    dp[i+1][j+1] = dp[i][j];
                }else{
                    dp[i+1][j+1] = Math.min(Math.min(dp[i][j+1],dp[i+1][j]),dp[i][j])+1;
                }
            }
        }
        return dp[m][n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值