题目链接:
http://poj.org/problem?id=2481
题意:
给定n个区间(s,e),对于给出的每个区间,按顺序输出能够完全包含它的区间的个数,两个区间相等不算包含;
分析:
把给出的区间按考虑s从小到大 按e从大到小,那么只要考虑e的情况,每遍历一个区间 i i i,求出它的 s u m ( s i ) sum(s_i) sum(si)就可以了(即求出它前面的满足 e > = e i e>=e_i e>=ei区间个数,它前面区间都满足 s < = s i s<=s_i s<=si),然后还要注意特判,排序后的相邻两个区间完全相同,就把前面一个的结果赋给后面那个区间的结果,这题也可以用线段树写;
代码:
树状数组
#include<algorithm>
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<cmath>
#include<set>
#include<map>
using namespace std;
#define inf 0x7f7f7f7f
#define maxn 110410
#define N 2
#define mod 100003
typedef long long ll;
inline void write(int x) {
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
inline int read() {
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9') {
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
struct interval{
int s,e,id;
};
bool compare(interval a,interval b){
if(a.e==b.e)return a.s<b.s;
else return a.e>b.e;
}
interval in[maxn];
int maxm,n,a[maxn],b[maxn];
void insert(int x,int val){
while(x<=maxm){
a[x]+=val;
x+=x&-x;
}
}
int sum(int x){
int res=0;
while(x){
res+=a[x];
x-=x&-x;
}
return res;
}
int main() {
while(cin>>n&&n){//记得加n==0退出条件,不然会wa
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i=0;i<n;i++){
scanf("%d%d",&in[i].s,&in[i].e);
in[i].id=i;
maxm=max(maxm,in[i].s+1);
}
sort(in,in+n,compare);
for(int i=0;i<n;i++){
if(i!=0&&in[i].e==in[i-1].e&&in[i].s==in[i-1].s) {//特判
b[in[i].id]=b[in[i-1].id];
}
else b[in[i].id]=sum(in[i].s+1);
insert(in[i].s+1,1);
}
for(int i=0;i<n-1;i++)
cout<<b[i]<<" ";
cout<<b[n-1]<<endl;
}
return 0;
}
线段树
#include <algorithm>
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <set>
#include <map>
using namespace std;
#define inf 0x7f7f7f7f
#define maxn 100005
#define N 200005
#define P 2
typedef long long ll;
struct Tree {
int l, r, sum;
} tree[4 * maxn];
struct Interval {
int l, r, id;
} itv[maxn];
bool cmp(Interval a, Interval b) {
if (a.l == b.l)return a.r > b.r;
return a.l < b.l;
}
int n, a[maxn], cnt, res[maxn];
void push_up(int x) {
tree[x].sum = tree[x << 1].sum + tree[x << 1 | 1].sum;
}
void build(int x, int l, int r) {
tree[x].l = l, tree[x].r = r;
if (l == r) {
tree[x].sum = 0;
return;
}
int mid = (l + r) >> 1;
build(x << 1, l, mid);
build(x << 1 | 1, mid + 1, r);
push_up(x);
}
void update(int x, int pos, int val) {
int l = tree[x].l, r = tree[x].r;
if (l == r) {
tree[x].sum += 1ll * val;
return;
}
int mid = (l + r) >> 1;
if (pos <= mid)update(x << 1, pos, val);
else update(x << 1 | 1, pos, val);
push_up(x);
}
int query(int x, int l, int r) {
int le = tree[x].l, ri = tree[x].r;
if (le >= l && ri <= r) {
return tree[x].sum;
}
int mid = (le + ri) >> 1;
int ans = 0;
if (l <= mid)ans += query(x << 1, l, r);
if (r > mid)ans += query(x << 1 | 1, l, r);
return ans;
}
int main() {
while (scanf("%d", &n) && n) {
cnt = 0;
for (int i = 1; i <= n; i++) {
scanf("%d%d", &itv[i].l, &itv[i].r);
itv[i].id = i;
a[++cnt] = itv[i].r;
}
sort(a + 1, a + 1 + cnt);
int len = unique(a + 1, a + 1 + cnt) - a - 1;
build(1, 1, len);
sort(itv + 1, itv + 1 + n, cmp);
//for (int i = 1; i <= n; i++)
// cout <<itv[i].l << " " << itv[i].r <<endl;
for (int i = 1; i <= n; i++) {
int pos = lower_bound(a + 1, a + 1 + len, itv[i].r) - a;
if (itv[i].l == itv[i - 1].l && itv[i].r == itv[i - 1].r)
res[itv[i].id] = res[itv[i - 1].id];
else res[itv[i].id] = query(1, pos, len);
update(1, pos, 1);
}
for (int i = 1; i <= n - 1; i++)
printf("%d ", res[i]);
printf("%d\n", res[n]);
}
}
我们坚持一件事情,并不是因为这样做了会有效果,而是坚信,这样做是对的。
——哈维尔