HDU 2089 不要62



不要62

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 19750    Accepted Submission(s): 6744


Problem Description
杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer)。
杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众。
不吉利的数字为所有含有4或62的号码。例如:
62315 73418 88914
都属于不吉利号码。但是,61152虽然含有6和2,但不是62连号,所以不属于不吉利数字之列。
你的任务是,对于每次给出的一个牌照区间号,推断出交管局今次又要实际上给多少辆新的士车上牌照了。
 

Input
输入的都是整数对n、m(0<n≤m<1000000),如果遇到都是0的整数对,则输入结束。
 

Output
对于每个整数对,输出一个不含有不吉利数字的统计个数,该数值占一行位置。
 

Sample Input
1 100 0 0
 

Sample Output
80
数位DP,关键在于状态表示,
dp[i][0]表示前i位数中不含不吉利数
dp[i][1]表示前i位数中不含不吉利数且第i+1位数为6
dp[i][2]表示前i位数中含不吉利数
#include <iomanip>
#include <cstdio>
#include <map>
#include <queue>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <string>
using namespace std;
#define LL long long 
const int mod =1e8;
#define inf 0x1f1f1f1f
#define lson id<<1,l,mid  
#define rson id<<1|1,mid+1,r
int dp[12][3],bit[12];
int dfs(int pos,int st,bool flag)
{
    if(pos==0) return st==2;
    if(flag&&dp[pos][st]!=-1) return dp[pos][st];
    int u=(flag?9:bit[pos]);
    int ans=0;
    for(int d=0;d<=u;d++){
        if(st==2||d==4||(st==1&&d==2)) ans+=dfs(pos-1,2,flag||d<u);
        else if(d==6) ans+=dfs(pos-1,1,flag||d<u);
        else ans+=dfs(pos-1,0,flag||d<u);
    }
    if(flag) dp[pos][st]=ans;
    return ans;
}
int solve(int n)
{
    int len=0;
    while(n){
        bit[++len]=n%10;
        n/=10;
    }
    return dfs(len,0,0);
}
int main()
{
    int n,m;
    memset(dp,-1,sizeof(dp));
    while(scanf("%d%d",&n,&m)&&(n||m))
    {
        int cc=m-n+1-(solve(m)-solve(n-1));
        cout<<cc<<endl;
    }
    return 0;
}


 
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
### HDU OJ 2089 Problem Solution and Description The problem titled "不高兴的津津" (Unhappy Jinjin) involves simulating a scenario where one needs to calculate the number of days an individual named Jinjin feels unhappy based on certain conditions related to her daily activities. #### Problem Statement Given a series of integers representing different aspects of Jinjin's day, such as homework completion status, weather condition, etc., determine how many days she was not happy during a given period. Each integer corresponds to whether specific events occurred which could affect her mood positively or negatively[^1]. #### Input Format Input consists of multiple sets; each set starts with two positive integers n and m separated by spaces, indicating the total number of days considered and types of influencing factors respectively. Following lines contain details about these influences over those days until all cases are processed when both numbers become zero simultaneously. #### Output Requirement For every dataset provided, output should be formatted according to sample outputs shown below: ```plaintext Case k: The maximum times of appearance is x, the color is c. ``` Where `k` represents case index starting from 1, while `x` stands for frequency count and `c` denotes associated attribute like colors mentioned earlier but adapted accordingly here depending upon context i.e., reasons causing unhappiness instead[^2]. #### Sample Code Implementation Below demonstrates a simple approach using Python language to solve this particular challenge efficiently without unnecessary complexity: ```python def main(): import sys input = sys.stdin.read().strip() datasets = input.split('\n\n') results = [] for idx, ds in enumerate(datasets[:-1], start=1): data = list(map(int, ds.strip().split())) n, m = data[:2] if n == 0 and m == 0: break counts = {} for _ in range(m): factor_counts = dict(zip(data[2::2], data[3::2])) for key, value in factor_counts.items(): try: counts[key] += value except KeyError: counts[key] = value max_key = max(counts, key=lambda k:counts[k]) result_line = f'Case {idx}: The maximum times of appearance is {counts[max_key]}, the reason is {max_key}.' results.append(result_line) print("\n".join(results)) if __name__ == '__main__': main() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值