【LeetCode笔记】Candy

本文讨论了一个关于儿童糖果分配的问题,其中提出了一种时间复杂度为O(N)的解决方案,仅需遍历一次评级数组即可计算出所需糖果总数。通过详细解释算法过程,包括如何处理连续递减评级序列和确保糖果分配符合特定规则,本文提供了一个清晰且高效的解决思路。

Something wrong with my solution as describing below.

I got a wrong answer: Input: [1,2,4,4,3] Output: 10 Expected: 9

my output is 1+2+3+3+1 = 10. and I think OJ's is 1+2+3+2+1 = 9

how can the third child has more candies than the fourth?

But the requirement is "Children with a higher rating get more candies than their neighbors", 

I don't want to deal with my code anymore, because I think this question is not well defined.

------------------------------------------------------------------------------

I found a nice code in the discussion:

ref: https://oj.leetcode.com/discuss/76/does-anyone-have-a-better-idea

Here is another wonderful solution from old discuss by hawk. Thanks to hawk!

The solution is O(N) time complexity and constant memory complexity. What's more, the solution only need to go thru the ratings array once!

Reading the code with full comment to help understand the algorithm.

int candy(vector<int> &ratings) {
    // Note: The Solution object is instantiated only once and is reused by each test case.
    int nCandyCnt = 0;///Total candies
    int nSeqLen = 0;  /// Continuous ratings descending sequence length
    int nPreCanCnt = 1; /// Previous child's candy count
    int nMaxCntInSeq = nPreCanCnt;
    if(ratings.begin() != ratings.end())
    {
        nCandyCnt++;//Counting the first child's candy.
        for(vector<int>::iterator i = ratings.begin()+1; i!= ratings.end(); i++)
        {
            // if r[k]>r[k+1]>r[k+2]...>r[k+n],r[k+n]<=r[k+n+1],
            // r[i] needs n-(i-k)+(Pre's) candies(k<i<k+n)
            // But if possible, we can allocate one candy to the child,
            // and with the sequence extends, add the child's candy by one
            // until the child's candy reaches that of the prev's.
            // Then increase the pre's candy as well.


            // if r[k] < r[k+1], r[k+1] needs one more candy than r[k]
            // 
            if(*i < *(i-1))
            {
                //Now we are in a sequence
                nSeqLen++;
                if(nMaxCntInSeq == nSeqLen)
                {
                    //The first child in the sequence has the same candy as the prev
                    //The prev should be included in the sequence.
                    nSeqLen++;
                }
                nCandyCnt+= nSeqLen;
                nPreCanCnt = 1;
            }
            else
            {
                if(*i > *(i-1))
                { 
                    nPreCanCnt++;
                }
                else
                {
                    nPreCanCnt = 1;
                }
                nCandyCnt += nPreCanCnt;
                nSeqLen = 0;
                nMaxCntInSeq = nPreCanCnt;
            }   
        }
    }
    return nCandyCnt;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值