Treavelling Salesman题解

Bahosain作为一名在Jordan的推销员,需要在不同城市间穿梭,他需决定新车油箱最小容量。每行驶一公里消耗一升油,每个城市有一个加油站。给定城市和道路信息,找出最小油箱容量,确保能从任意一对城市间往返一次。题目要求求解最小生成树,并注意输入数据量大,避免cin导致超时。

Treavelling Salesman

After leaving Yemen, Bahosain now works as a salesman in Jordan. He spends most of his time travelling
between different cities. He decided to buy a new car to help him in his job, but he has to decide about the
capacity of the fuel tank. The new car consumes one liter of fuel for each kilometer.

Each city has at least one gas station where Bahosain can refill the tank, but there are no stations on the roads
between cities.

Given the description of cities and the roads between them, find the minimum capacity for the fuel tank
needed so that Bahosain can travel between any pair of cities in at least one way.

Input

The first line of input contains T (1 ≤ T ≤ 64)​that represents the number of test cases.

The first line of each test case contains two integers: N (3 ≤ N ≤ 100,000)​and M (N-1 ≤ M ≤ 100,000)​,
where N​is the number of cities, and M​is the number of roads.

Each of the following M​lines contains three integers: X Y C (1 ≤ X, Y ≤ N)(X ≠ Y)(1 ≤ C ≤ 100,000)​, where
C​is the length in kilometers between city X​and city Y​. Roads can be used in both ways.
It is guaranteed that each pair of cities is connected by at most one road, and one can travel between any pair
of cities using the given roads.

Output

For each test case, print a single line with the minimum needed capacity for the fuel tank.

Sample Input

2
6 7
1 2 3
2 3 3
3 1 5
3 4 4
4 5 4
4 6 3
6 5 5

3 3
1 2 1
2 3 2
3 1 3

Sample Output

4
2

题意

题目的大致意思是说有个推销员要在不同的城市之间往来(开车),但是只有每个城市才有加油站,城市之间的的路上是没有加油站的,问他的汽车的油箱至少要多大才能保证他的车不搁在路上。

解题思路

典型的求最小生成树的问题,另外输入的测试数据较大,使用cin可能会超时,建议使用scanf(对c++而言)。

代码

/*
 * Travelling Salesman
 */
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;

const int maxn = 100010;

struct Edgd{
    int u,v,e;
};

int Kurskal(int n,int m,Edgd &e);
int cmp(const Edgd a,const Edgd b);
int find(int x,int *p);

int Kurskal(int n,int m,Edgd *e) {
    int p[maxn]={'\0'},ans=0;
    for(int i=0;i<n;i++)p[i]=i;
    sort(e,e+m,cmp);
    for(int i=0;i<m;i++){
        int x=find(e[i].u,p),y=find(e[i].v,p);
        if(x!=y){
            p[x]=y;
            ans=max(ans,e[i].e);
        }
    }
    return ans;
}

int cmp(const Edgd a, const Edgd b) {
    return a.e<b.e;
}

int find(int x,int *p) {
    return p[x]==x?x:p[x]=find(p[x],p);
}

int main(){

//    freopen("in","r",stdin);

    int T,n,m;
    Edgd edgd[maxn];
    scanf("%d",&T);
    while(T--){
        cin>>n>>m;
        for(int i=0;i<m;i++){
            scanf("%d%d%d",&edgd[i].u,&edgd[i].v,&edgd[i].e);
        }
        cout<<Kurskal(n,m,edgd)<<endl;
    }
    return 0;
}
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文提出了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学公开的轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号分解精度,抑制模态混叠;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的动态特征,最终实现高精度的轴承故障分类。整个诊断流程充分结合了信号预处理、智能优化与深度学习的优势,显著提升了复杂工况下轴承故障诊断的准确性与鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①应用于旋转机械设备的智能运维与故障预警系统;②为轴承等关键部件的早期故障识别提供高精度诊断方案;③推动智能优化算法与深度学习在工业信号处理领域的融合研究。; 阅读建议:建议读者结合MATLAB代码实现,深入理解OCSSA优化机制、VMD参数选择策略以及CNN-BiLSTM网络结构的设计逻辑,通过复现实验掌握完整诊断流程,并可进一步尝试迁移至其他设备的故障诊断任务中进行验证与优化。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值