描述
给定数组 arr ,设长度为 n ,输出 arr 的最长上升子序列。(如果有多个答案,请输出其中 按数值(注:区别于按单个字符的ASCII码值)进行比较的 字典序最小的那个)

方法1:双层循环实现动态规划-超时
import java.util.*;
public class Solution {
/**
* retrun the longest increasing subsequence
* @param arr int整型一维数组 the array
* @return int整型一维数组
*/
public int[] LIS (int[] arr) {
int n = arr.length;
if (n == 0) {
return null;
}
int[] dp = new int[n];
int max = Integer.MAX_VALUE;
int index = -1;
Arrays.fill(dp, 1);
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (arr[j] < arr[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
if (dp[i] >= max) {
index = i;
max = dp[i];
}
}
}
//赋值
int[] res = new int[max];
for (int j = max, i = index; j > 0; i--) {
if (dp[i] == j) {
res[j--] = arr[i];
}
}
return res;
}
}
方法2:动态规划+二分查找,tail数组记录最小的数
import java.util.*;
public class Solution {
/**
* retrun the longest increasing subsequence
* @param arr int整型一维数组 the array
* @return int整型一维数组
*/
public int[] LIS (int[] arr) {
int n = arr.length;
int[] dp = new int[n];
int[] tail = new int[n + 1];
int end = 0;
tail[0] = Integer.MIN_VALUE; //存储对应位置元素的值
for(int i = 0; i < n; i++) {
int num = arr[i];
if(tail[end] < num) {
end++;
tail[end] = num;
dp[i] = end;
} else {
int low = 1, high = end;
while(low <= high) {
int mid = low + ((high - low) >> 1);
if(tail[mid] >= num) {
high = mid - 1;
} else if(tail[mid] < num) {
low = mid + 1;
}
}
tail[low] = num;
dp[i] = low;
}
}
int[] res = new int[end];
int len = end;
for(int i = n - 1; i >= 0; i--) {
if(dp[i] == len) {
res[len - 1] = arr[i];
len--;
}
}
return res;
}
}
方法3:方法2中二分查找使用工具类实现
import java.util.*;
public class Solution {
/**
* retrun the longest increasing subsequence
* @param arr int整型一维数组 the array
* @return int整型一维数组
*/
public int[] LIS (int[] arr) {
int n = arr.length;
int[] dp = new int[n];
int[] tail = new int[n + 1];
int end = 0;
tail[0] = Integer.MIN_VALUE; //存储对应位置元素的值
for(int i = 0; i < n; i++) {
int num = arr[i];
if(tail[end] < num) {
end++;
tail[end] = num;
dp[i] = end;
} else {
int site = Arrays.binarySearch(tail, 1, end, arr[i]);
if(site >= 0) {
continue;
}
int ins = -(site + 1);
tail[ins] = arr[i];
dp[i] = ins;
}
}
int[] res = new int[end];
int len = end;
for(int i = n - 1; i >= 0; i--) {
if(dp[i] == len) {
res[len - 1] = arr[i];
len--;
}
}
return res;
}
}

被折叠的 条评论
为什么被折叠?



