import pandas as pd;
titanic = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
X = titanic[['pclass', 'age', 'sex']]
y = titanic['survived']
X['age'].fillna(X['age'].mean(), inplace = True)
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 33)
from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse = False)
X_train = vec.fit_transform(X_train.to_dict(orient = 'record'))
X_test = vec.transform(X_test.to_dict(orient = 'record'))
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(X_train, y_train)
dtc_y_pred = dtc.predict(X_test)
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
rfc_y_pred = rfc.predict(X_test)
from sklearn.ensemble import GradientBoostingClassifier
gbc = GradientBoostingClassi
集成模型python实现,随机森林,梯度提升决策树
最新推荐文章于 2024-07-15 15:30:12 发布
这篇博客介绍了如何使用Python进行集成模型的实现,具体包括随机森林和梯度提升决策树。首先,从Titanic数据集中加载数据并进行预处理,然后利用DictVectorizer转换特征。接着,训练了决策树模型,再分别训练随机森林和梯度提升决策树模型,并评估了它们在测试集上的预测准确性。最后,通过classification_report展示了各个模型的性能指标。

最低0.47元/天 解锁文章
26

被折叠的 条评论
为什么被折叠?



