from sklearn.datasets import load_boston
boston = load_boston()
from sklearn.cross_validation import train_test_split
import numpy as np;
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 33, test_size = 0.25)
print 'The max target value is: ', np.max(boston.target)
print 'The min target value is: ', np.min(boston.target)
print 'The average terget value is: ', np.mean(boston.target)
from sklearn.preprocessing import StandardScaler
ss_X = StandardScaler()
ss_y = StandardScaler()
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, y_train)
lr_y_predict = lr.predict(X_test)
from sklearn.linear_model import SGDRegressor
sgdr = SGDRegressor()
sgdr.fit(X_train, y_train)
sgdr_y_predict = sgdr.predict(X_test)
p
python实现房价预测,采用回归和随机梯度下降法
最新推荐文章于 2025-10-24 16:07:14 发布
该博客通过Python的sklearn库展示了如何利用线性回归(LinearRegression)和随机梯度下降(SGDRegressor)模型对波士顿房价数据集进行预测。首先,数据被划分为训练集和测试集,然后使用标准化预处理。接着,分别训练两种模型,并计算它们在测试集上的默认评估指标、R方分数、均方误差和平均绝对误差,以比较其预测性能。

最低0.47元/天 解锁文章
8158

被折叠的 条评论
为什么被折叠?



