面试算法题:有一对兔子,从出生后第3个月起每个月都生一对兔子

本文探讨了一个经典的兔子繁殖问题,并通过解析问题本质揭示了其背后的数学规律——斐波那契数列。文章给出了求解该问题的具体算法及通项公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题目是网上找的
有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?


关键思路:第n个月比第n-1个月多的是有生兔子能力的兔子个数,而有能力生育的兔子个数是n-2个月的兔子数(这些兔子在第三个月可以生育)。
所以fn=fn-1+fn-2
这是典型的Fibonacci
它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】

直接计算这个公式即可。

如果不会计算,就去看看Fibonacci或者补习一下高数的数学归纳法。


代码略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值