HDU 1069 TOJ 1322 Monkey and Banana(贪心+dp)

探讨了如何通过编程解决猴子使用不同尺寸的方块搭建最高塔的问题。该问题涉及到方块的排列组合以及寻找最高的稳定结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. 

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. 

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

思路

题目的意思是给我们n种长宽高为x,y,z的方块,每种方块有无数个,然后问我们如何叠,才能使得最后叠出来的小塔高度最高,并且需要满足的是上面那个方块的长宽一定要小于下面那个方块的长宽。

可以简单的看出来,每个方块其实都有六种摆放方法,以x为长,y为宽,z为高,以y为长,x为宽,z为高......

所以我们先对每个方块进行处理,将六种情况全部记录下来,并且按照长宽递减排序,那么就转换成了一个最长递减子序列的问题。然后dp[i]数组当中存放的值是以i为最顶层方块,能获得的最大高度。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 205;
struct Node{
	int x,y,z;
}node[N];
bool cmp(Node a, Node b){
	if(a.x!=b.x){
		return a.x>b.x;
	}else{
		return a.y>b.y;
	}
}

int main() {
	ios::sync_with_stdio(false);
	int t,i,j,n,x,y,z,L,T;
	T=1;
	int dp[N];
	while(cin>>t){
		if(t==0) break;		
		L=0;
		for(i=0;i<t;i++){
			cin>>x>>y>>z;
			node[L].x=x,node[L].y=y,node[L++].z=z;
			node[L].x=y,node[L].y=z,node[L++].z=x;
			node[L].x=z,node[L].y=x,node[L++].z=y;
			node[L].x=y,node[L].y=x,node[L++].z=z;
			node[L].x=z,node[L].y=y,node[L++].z=x;
			node[L].x=x,node[L].y=z,node[L++].z=y;
		}
		sort(node,node+L,cmp);
		for(i=0;i<L;i++)
			dp[i]=node[i].z; 
		int mm=0;
		for(i=0;i<L;i++){
			for(j=0;j<i;j++){
				if(node[i].x<node[j].x&&node[i].y<node[j].y)
					dp[i]=max(dp[i],dp[j]+node[i].z);	
			}
			mm=max(dp[i], mm);
		}
		cout<<"Case "<<T++<<": maximum height = "<<mm<<endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值