题目:https://www.luogu.org/problem/P3831
一个网格图,横向或纵向走一边用时2,在特定点转向用时1,问从起点到终点用时最短为多少。
Solution:
虽然题目给出一个网格图,但是实际有用的点就是起点,终点和能换乘的点三种点,其余的点都可以忽略。
考虑分层图,第一层为横走向,第二层为纵走向,中间为转向所花的代价。
代码:
#include<bits/stdc++.h>
using namespace std;
#define pii pair<int, int>
const int INF = 0x3f3f3f3f;
const int MAXN = 100009 * 2;
const int MAXM = 1000090;
int n, m;
int start, ende;
struct node
{
int x, y, id;
}a[MAXN];
bool cmp_x(node a, node b)
{
if(a.x == b.x) return a.y < b.y;
return a.x < b.x;
}
bool cmp_y(node a, node b)
{
if(a.y == b.y) return a.x < b.x;
return a.y < b.y;
}
struct Edge
{
int to, w, nxt;
}edge[MAXM];
int head[MAXN], t = 1;
void init()
{
memset(head, -1, sizeof(head));
t = 1;
}
void addEdge(int u, int v, int w)
{
edge[t].to = v;
edge[t].w = w;
edge[t].nxt = head[u];
head[u] = t++;
}
int dis[MAXN], book[MAXN];
void dijkstra()
{
memset(dis, INF, sizeof(dis)); dis[start] = 0;
memset(book, 0, sizeof(book));
priority_queue<pii, vector<pii>, greater<pii> > q;
q.push({dis[start], start});
while(!q.empty())
{
int u = q.top().second;
q.pop();
if(book[u]) continue;
book[u] = 1;
for(int i = head[u]; i != -1; i = edge[i].nxt)
{
int to = edge[i].to;
int w = edge[i].w;
if(!book[to] && dis[to] > dis[u] + w)
{
dis[to] = dis[u] + w;
q.push({dis[to], to});
}
}
}
}
int main()
{
cin >> n >> m;
init();
n = m + 2; //一共有m+2个点
start = n - 1; ende = n; //起点和终点
for(int i = 1; i <= n; i++)
{
cin >> a[i].x >> a[i].y;
a[i].id = i;
}
sort(a + 1, a + 1 + n, cmp_x); //以横坐标排序
for(int i = 2; i <= n; i++)//建立第一层,横走向
{
if(a[i].x == a[i - 1].x) //如果两点横坐标相同,则在两点之间连边,边的权值就是这两个点相互到达所需时间
{
addEdge(a[i].id, a[i - 1].id, (a[i].y - a[i - 1].y) * 2);
addEdge(a[i - 1].id, a[i].id, (a[i].y - a[i - 1].y) * 2);
}
}
sort(a + 1, a + 1 + n, cmp_y);
for(int i = 2; i <= n; i++) //建立第二层,纵走向
{
if(a[i].y == a[i - 1].y)
{
addEdge(a[i].id + n, a[i - 1].id + n, (a[i].x - a[i - 1].x) * 2);
addEdge(a[i - 1].id + n, a[i].id + n, (a[i].x - a[i - 1].x) * 2);
}
}
for(int i = 1; i <= n - 2; i++) //两层之间,由 横向转为纵向 或 由纵向转为横向 的花费
{
addEdge(i, i + n, 1);
addEdge(i + n, i, 1);
}
addEdge(start, start + n, 0); //在起点和终点转向不需花费
addEdge(start + n, start, 0);
addEdge(ende, ende + n, 0);
addEdge(ende + n, ende, 0);
dijkstra();
if(dis[ende] == INF) cout << -1 << endl;
else cout << dis[ende] << endl;
return 0;
}