import pickle
import numpy as np
import os
CIFAR_DIR = r'./data/cifar-10-batches-py'
print(os.listdir(CIFAR_DIR))
with open(os.path.join(CIFAR_DIR, 'data_batch_1'), 'rb') as f:
data = pickle.load(f,encoding='latin1')
print(type(data))
print(type(data['data']))
print(data['data'].shape)
image_arr = data['data'][100]
image_arr = image_arr.reshape((3,32,32)) # 32,32,33
image_arr = image_arr.transpose((1,2,0)) # numpy转换维度
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
imshow(image_arr)
plt.show()
# tensorlow model
import tensorflow as tf
import os
import numpy as np
def load_data(filename):
""" read data from data file."""
with open(filename, 'rb') as f:
data = pickle.load(f,encoding='latin1')
return data['data'],data['labels']
class CifarData():
def __init__(self, filenames, need_shuffle):
all_data = []
all_labels = []
for filename in filenames:
data , labels
cifar10 进行多分类
最新推荐文章于 2024-11-11 20:36:16 发布
本文介绍如何使用Python和TensorFlow从CIFAR-10数据集中加载图片数据,并实现一个二分类模型。通过pickle模块读取数据集,利用numpy进行数据预处理,最后在TensorFlow中构建模型并训练。

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



