cifar10 进行多分类

本文介绍如何使用Python和TensorFlow从CIFAR-10数据集中加载图片数据,并实现一个二分类模型。通过pickle模块读取数据集,利用numpy进行数据预处理,最后在TensorFlow中构建模型并训练。
import pickle
import numpy as np
import os
CIFAR_DIR = r'./data/cifar-10-batches-py'
print(os.listdir(CIFAR_DIR))

with open(os.path.join(CIFAR_DIR, 'data_batch_1'), 'rb') as f:
    data = pickle.load(f,encoding='latin1')
    print(type(data))
    print(type(data['data']))
    print(data['data'].shape)

image_arr = data['data'][100]
image_arr = image_arr.reshape((3,32,32)) # 32,32,33
image_arr = image_arr.transpose((1,2,0)) # numpy转换维度

import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
imshow(image_arr)
plt.show()

# tensorlow model
import tensorflow as tf
import os
import numpy as np

def load_data(filename):
    """ read data from data file."""
    with open(filename, 'rb') as f:
        data = pickle.load(f,encoding='latin1')
        return data['data'],data['labels']

class CifarData():
    def __init__(self, filenames, need_shuffle):
        all_data = []
        all_labels = []
        for filename in filenames:
            data , labels 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值