380.Intersection of Two Linked Lists-两个链表的交叉(中等题)

本文介绍了一种高效算法,用于查找两个单链表的首个交叉节点。通过预先计算每个链表的长度并调整起点,确保两链表剩余部分等长,从而在O(n)时间内完成搜索,仅使用O(1)额外空间。

两个链表的交叉

  1. 题目

    请写一个程序,找到两个单链表最开始的交叉节点。

    注意事项
    如果两个链表没有交叉,返回null。
    在返回结果后,两个链表仍须保持原有的结构。
    可假定整个链表结构中没有循环。

  2. 样例

    下列两个链表:
    这里写图片描述
    在节点 c1 开始交叉。

  3. 挑战

    需满足 O(n) 时间复杂度,且仅用 O(1) 内存。

  4. 题解

    如样例,对A,B进行遍历得到A的节点数为5,B的节点数为6,则先将B向后移动1个节点,则此时A,B长度相同。再将A,B同时向后移动,并比较节点是否相同,如果相同则返回该节点。

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;      
 *     }
 * }
 */
public class Solution {
    /**
     * @param headA: the first list
     * @param headB: the second list
     * @return: a ListNode 
     */
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        ListNode n1 = headA;
        ListNode n2 = headB;
        int count1 = 0;
        int count2 = 0;
        while (n1 != null)
        {
            count1++;
            n1 = n1.next;
        }
        while (n2 != null)
        {
            count2++;
            n2 = n2.next;
        }
        if (count1 < count2)
        {
            ListNode tmp = headA;
            headA = headB;
            headB = tmp;
        }
        int n = Math.abs(count1 - count2);
        while (n-- > 0)
        {
            headA = headA.next;
        }
        while (headA != null)
        {
            if (headA.val == headB.val)
            {
                return headA;
            }
            headA = headA.next;
            headB = headB.next;
        }

        return null;
    }  
}

Last Update 2016.11.11

内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合Koopman算子理论与递归神经网络(RNN)的数据驱动建模方法,旨在对非线性纳米定位系统进行有效线性化建模,并实现高精度的模型预测控制(MPC)。该方法利用Koopman算子将非线性系统映射到高维线性空间,通过递归神经网络学习系统的动态演化规律,构建可解释性强、计算效率高的线性化模型,进而提升预测控制在复杂不确定性环境下的鲁棒性与跟踪精度。文中给出了完整的Matlab代码实现,涵盖数据预处理、网络训练、模型验证与MPC控制器设计等环节,具有较强的基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)可复现性和工程应用价值。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及自动化、精密仪器、机器人等方向的工程技术人员。; 使用场景及目标:①解决高精度纳米定位系统中非线性动态响应带来的控制难;②实现复杂机电系统的数据驱动建模与预测控制一体化设计;③为非线性系统控制提供一种可替代传统机理建模的有效工具。; 阅读建议:建议结合提供的Matlab代码逐模块分析实现流程,重点关注Koopman观测矩阵构造、RNN网络结构设计与MPC控制器耦合机制,同时可通过替换实际系统数据进行迁移验证,深化对数据驱动控制方法的理解与应用能力。
以下对使用双指针 `p` 和 `q` 遍历链表来求解两个链表相交节点的逻辑和原理进行分析。 ### 代码逻辑 ```cpp /** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ class Solution { public: ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) { ListNode* p = headA; ListNode* q = headB; while (p != q) { p = p ? p->next : headB; q = q ? q->next : headA; } return p; } }; ``` ### 原理分析 1. **初始化指针**:定义两个指针 `p` 和 `q`,分别指向链表 `A` 和链表 `B` 的头节点。 2. **遍历链表**:使用 `while` 循环,只要 `p` 不等于 `q`,就继续循环。在每次循环中,如果 `p` 不为空,就将 `p` 指向下一个节点;如果 `p` 为空,就将 `p` 指向链表 `B` 的头节点。对于 `q` 指针同理,如果 `q` 不为空,就将 `q` 指向下一个节点;如果 `q` 为空,就将 `q` 指向链表 `A` 的头节点。 3. **找到相交节点**:当 `p` 等于 `q` 时,循环结束,此时 `p`(或 `q`)所指向的节点就是两个链表的相交节点。如果两个链表不相交,那么最终 `p` 和 `q` 都会指向 `nullptr`。 ### 具体解释 - **相交情况**:假设链表 `A` 的长度为 `m`,链表 `B` 的长度为 `n`,两个链表相交部分的长度为 `k`。那么链表 `A` 不相交部分的长度为 `m - k`,链表 `B` 不相交部分的长度为 `n - k`。当 `p` 遍历完链表 `A` 后,会指向链表 `B` 的头节点;当 `q` 遍历完链表 `B` 后,会指向链表 `A` 的头节点。此时,`p` 和 `q` 走过的路程分别为 `m + (n - k)` 和 `n + (m - k)`,由于 `m + (n - k) = n + (m - k)`,所以 `p` 和 `q` 会在相交节点处相遇。 - **不相交情况**:如果两个链表不相交,那么 `p` 和 `q` 会分别遍历完链表 `A` 和链表 `B`,然后同时指向 `nullptr`,此时 `p` 等于 `q`,循环结束,返回 `nullptr`。 ### 复杂度分析 - **时间复杂度**:$O(m + n)$,其中 `m` 和 `n` 分别是两个链表的长度。因为每个指针最多遍历两个链表各一次。 - **空间复杂度**:$O(1)$,只使用了常数级的额外空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值