[Blog Excerpt] 12 things I wish I’d known before starting as a Data Scientist

本文分享了数据科学领域的入门经验和学生成为数据科学家的建议。入门须知包括数据科学概念模糊、有冒名顶替综合症很正常、无需掌握所有工具等;成长建议有上相关课程、锻炼沟通能力、处理实际数据问题、发布作品获反馈、参加活动及灵活入行。

12 things I wish I’d known before starting as a Data Scientist - by Jason Goodman

What I Wish I’d Known about Data Science

1. ‘Data science’ is a vague term, so treat it accordingly

Data science can cover virtually any quantitative work. Two data scientists at different companies, or even within the same company, could do totally different types of work. The field has gradually been fracturing into more specific job titles, such as data engineer, data analyst, machine learning engineer, and so on. This process of specialization will certainly accelerate in the future.

Figuring out what deliverables you’ll be responsible for is often better than reading actual job descriptions, since job descriptions tend to get written to attract a broad range of candidates for a role rather than really detail what the job will entail.

2. Imposter syndrome is a normal part of the job

All you need to do in order to be a good data scientist is to find a way to use data to be useful.

There are lots of different ways to do that. It’s fine to feel imposter syndrome from time to time. Just know it’s normal, and don’t let it get you down. Instead, try to embrace situations where you have something new to learn as exciting growth opportunities, and remember to keep that feeling in mind the next time you encounter someone else who doesn’t know something you do.

3. You’ll never have to know all the tools

Fortunately, you can safely ignore 99% of the data science tools out there. Eventually, your company will have its own set of tools. Everyone at the company will get good at using those tools, and be completely clueless about most of the others.

You just need to know enough to pass an interview. Pick a small set of tools that work for you.

4. However, learn your basic tools well

You don’t have to know every tool, but you should go deep on the basic tools you use daily.

You’ll never regret learning the boring parts of whatever SQL dialect your company uses, like how to write an optimized query. If you use Python, try to really understand pandas, numpy and scipy. Also, git.

5. You’re an expert in a domain, not just methods

Data science came about as a compromise between research science roles and business analyst roles. The former used powerful methods but only indirectly influenced business decisions while the latter directly influenced business owners but wielded limited tools to do so. Data scientists make the most impact when they combine both sides together, mixing deep domain knowledge with the right statistical and engineering tools to make better decisions or useful data products.

Knowing your domain is half the battle, so invest time there, just like you do for your ‘hard skills.’

6. The most important skill is critical thinking

It’s worth actively spending time thinking about the broader context of your work.

What to do as a student to become a Data Scientist

7. Take relevant classes — not just technical classes

Anything that gets you practice thinking critically and making written arguments, such as philosophy, history, or English, can be useful, since that’s a lot of what you do in data science. Social science subjects such as economics or quantitative psychology can be great for gaining experience making causal inferences. A class I think back to often is the persuasive speaking class I took, which I invoke regularly at my job. Take your fair share of technical classes, but learn broadly and follow your interests.

8. Practice communication — written, visual, and verbal

Your impact can only be as good as your communication skills since you need to persuade others to make decisions or help build products based on your analyses.

9. Work on real data problems

The best way to prepare for a job as a data scientist is to use real data to answer real questions.

Find something you’re interested in and get your own data. Scraping data off the Internet is much easier than most beginners realize with packages like BeautifulSoup, Scrapy, and rvest. Wikipedia and Reddit are good targets if you need inspiration, but the best choice is something that you’re genuinely excited about exploring. Then, ask some questions that interest you and see how well you can answer them. Clean the data, make some graphs and models, and then write up your conclusions somewhere public.

10. Publish your work and get feedback however you can

The only way to get better at anything is to get feedback. These days, it’s so easy to post notebooks to Github or personal websites. If you write about a topic your friends are interested in, you can learn a lot from how they respond.

11. Go to events — hackathons, conferences, meetups

Doing so will give you a better understanding of the realities of the field and give you a head start for networking.

12. Be flexible with how you enter the field
下载前必看:https://renmaiwang.cn/s/bvbfw Verilog设计_串并转换 / 移位寄存器实现了一种串并转换的功能,其核心原理在于移位寄存器的运用。 这里详细展示了串转并以及并转串两种不同的设计方案。 每一种转换模式都设有专属的使能信号,同时并行输出数据的格式提供了两种选择:最低有效位优先(lsb)和最高有效位优先(msb)。 串并转换技术主要应用于串行传输与并行传输这两种数据传输模式之间的相互转换,而移位寄存器是达成这一目标的常用工具,能够支持并行及串行的数据输入与输出操作。 这些移位寄存器通常被设定为“串行输入、并行输出”(SIPO)或“并行输入、串行输出”(PISO)两种工作模式。 在串行数据输出的过程中,构成数据和字符的码元会按照既定的时间顺序逐位进行传输。 相比之下,并行数据传输则是在同一时刻将固定数量(普遍为8位或16位等)的数据和字符码元同时发送至接收端。 数据输入通常采用串行格式进行。 一旦数据成功输入寄存器,它便可以在所有输出端同时被读取,或者选择逐位移出。 寄存器中的每个触发器均设计为边沿触发类型,并且所有触发器均以特定的时钟频率协同工作。 对于每一个输入位而言,它需要经过N个时钟周期才能最终在N个输出端呈现,从而完成并行输出。 值得注意的是,在串行加载数据期间,并行输出端的数据状态应保持稳定。 数据输入则采用并行格式。 在将数据写入寄存器的操作过程中,写/移位控制线必须暂时处于非工作状态;而一旦需要执行移位操作,控制线便会变为激活状态,并且寄存器会被锁定以保持当前状态。 只要时钟周期数不超过输入数据串的长度,数据输出端Q将按照预定的顺序逐位读出并行数据,并且必须明确区分最低有效位(LSB)和最高有效位(MSB)。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值