零基础实战Keras模型转化为RKNN格式模型成功运行在RK3399Pro板子上

本文介绍了如何将Keras训练的模型转化为适应RK3399Pro板子的RKNN格式,利用NPU硬件加速。详细步骤包括环境配置、模型数据合并、转换及验证,最终实现模型在边缘计算设备上的快速推理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     深度学习实验大多是在服务器端进行的,在实际的应用中,想要把训练好的模型投入实际的应用中去的时候往往需要转化为适应于边缘端或者是移动端计算的格式,一是缩减模型大小降低原有的参数体量,二是借助于硬件环境的加速能力,提升模型的推理速度,总之就是为了能够在板子上跑的更快点。

     在实际的开发实践中,我们选择使用的是RK3399Pro这个型号的板子,提供了NPU级别的硬件加速计算能力,官方的文档地址在这里,首页截图如下所示:

    这里是官方给出来的云计算和边缘计算的简单对比说明:

云计算与边缘计算

云计算

端侧仅负责发送输入数据,并接收计算结果
计算资源集中管理和分配,借助服务器的强大性能,可以实现很高的浮点算力和精度水平
部署便捷,云服务器可直接部署训练的模型框架,无需转换和二次开发即可使用
算力成本高,常规神经网络运算使用GPU浮点运算&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值