Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example
1:
Given intervals [1,3],[6,9]
,
insert and merge [2,5]
in
as [1,5],[6,9]
.
Example
2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
,
insert and merge [4,9]
in
as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps
with [3,5],[6,7],[8,10]
.
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
vector<Interval> insert(vector<Interval> &intervals, Interval newInterval) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<Interval> result;
int nSize = intervals.size();
if (nSize == 0)
{
result.push_back(newInterval);
return result;
}
int idx = 0;
Interval val;
for (; idx < nSize; ++idx)
{
val = intervals[idx];
if (newInterval.start > val.end)
{
result.push_back(val);
}
// 无相交区域
else if (newInterval.end < val.start)
{
result.push_back(newInterval);
while(idx < nSize)
result.push_back(intervals[idx++]);
}
else
{
newInterval.start = newInterval.start < val.start ?
newInterval.start : val.start;
newInterval.end = newInterval.end > val.end ?
newInterval.end : val.end;
}
}
if (result.size() == 0 || result.back().end < newInterval.start)
{
result.push_back(newInterval);
}
return result;
}
};