POJ 2395--Out of Hay

本文探讨了一种算法问题,即求解最小生成树中最大的边长。通过使用优先队列和并查集的数据结构,该问题可以高效地解决。文章提供了一个完整的C++实现示例,并解释了如何最小化在农场间旅行所需的水容量。

题目:

Description

The cows have run out of hay, a horrible event that must be remedied immediately. Bessie intends to visit the other farms to survey their hay situation. There are N (2 <= N <= 2,000) farms (numbered 1..N); Bessie starts at Farm 1. She'll traverse some or all of the M (1 <= M <= 10,000) two-way roads whose length does not exceed 1,000,000,000 that connect the farms. Some farms may be multiply connected with different length roads. All farms are connected one way or another to Farm 1.

Bessie is trying to decide how large a waterskin she will need. She knows that she needs one ounce of water for each unit of length of a road. Since she can get more water at each farm, she's only concerned about the length of the longest road. Of course, she plans her route between farms such that she minimizes the amount of water she must carry.

Help Bessie know the largest amount of water she will ever have to carry: what is the length of longest road she'll have to travel between any two farms, presuming she chooses routes that minimize that number? This means, of course, that she might backtrack over a road in order to minimize the length of the longest road she'll have to traverse.

Input

* Line 1: Two space-separated integers, N and M.

* Lines 2..1+M: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, describing a road from A_i to B_i of length L_i.

Output

* Line 1: A single integer that is the length of the longest road required to be traversed.

Sample Input

3 3
1 2 23
2 3 1000
1 3 43

Sample Output

43

Hint

OUTPUT DETAILS:

In order to reach farm 2, Bessie travels along a road of length 23. To reach farm 3, Bessie travels along a road of length 43. With capacity 43, she can travel along these roads provided that she refills her tank to maximum capacity before she starts down a road.

题意:求最小生成树中的最大值。


实现:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <queue>
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

const int MAX = 20005;
int n, m;

int p[MAX];

int _find(int x) {
    return p[x] = (p[x] == x ? x : _find(p[x]));
}

struct node {
    int u, v, e;
    bool friend operator < (node n1, node n2) {
        return n1.e > n2.e;
    }
};

int main() {
    while(scanf("%d%d", &n, &m) != EOF) {
        for (int i = 1; i <= n; i++) {
            p[i] = i;
        }
        priority_queue <node> q;
        int u, v, value;
        for (int i = 0; i < m; i++) {
            scanf("%d%d%d", &u, &v, &value);
            node head;
            head.u = u;
            head.v = v;
            head.e = value;
            q.push(head);
        }

        int ans = -1;

        while (!q.empty()) {
            node tt = q.top();
            q.pop();
            int x, y;
            x = _find(tt.u);
            y = _find(tt.v);
            if (x != y) {
                p[y] = x;
                if (ans < tt.e)
                    ans = tt.e;
            }
        }
        printf("%d\n", ans);
     }

    return 0;
}


Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值