如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,即W = W3*[W2*(W1*x)]。
如果隐藏层不使用激活函数,仅在输出层使用sigmoid函数,那么效果仅仅和标准Logistic回归一样。
参考:
如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,即W = W3*[W2*(W1*x)]。
如果隐藏层不使用激活函数,仅在输出层使用sigmoid函数,那么效果仅仅和标准Logistic回归一样。
参考: