【POJ】poj 2488(DFS)

本文探讨了一位厌倦了黑白方格的骑士如何在全球范围内规划其旅行路线,目标是找到一条访问所有格子且仅访问一次的路径。通过深度优先搜索和记忆路径的方法,解决了一个在特定大小的棋盘上寻求最优路径的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Description

Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey 
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans? 

Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.

Input

The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number. 
If no such path exist, you should output impossible on a single line.

Sample Input

3
1 1
2 3
4 3

Sample Output

Scenario #1:
A1

Scenario #2:
impossible

Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4

 

 

 

      这个题目是深度优先搜索,并且记忆路径的,可以采用参数的方法来进行记录路径,还有题目要求的是按照字典序的方法输出,要注意搜索的方向,要先从行数最小的地方开始搜索,然后再按照行数增加的方法进行搜索,最后得出的方法就是按照字典序输出,对于字母可以对其行数进行类型转化,进行+‘A'处理之后可以转化为字符,对于一些运算量较大的数字,例如5, 5;4,6;等等之类的数字可以采用打表的方法来降低时间复杂度。

 

 

#include <iostream>
#include<algorithm>
#include<cstdio>
#include<stdio.h>
#include<queue>
#include<cstring>
#include<string>
using namespace std;
int isvisit[30][30];
int trace[30][30];
int row,col,times,index,runs,show;
string diaplay;
int dir[8][2]={{-1,-2},{1,-2},{-2,-1},{2,-1},{-2,1},{2,1},{-1,2},{1,2}};/**定义数字为x和y的变化方向*/
bool dfs(int x,int y,int step,string ans)
{

    if ( step == row*col )
    {
        cout << ans << endl <<endl;
        return true;
    }
    for ( int i = 0; i < 8;i++)
    {
        int dx = x + dir[i][0];
        int dy = y + dir[i][1];
        char ans1 = dy + 'A';
        char ans2 = dx + '1';/**将坐标位置转化为字符*/
        if ( dx >= 0 && dx < col && dy >= 0 && dy < row && isvisit[dy][dx] == 0 )
        {
            isvisit[dy][dx] = 1;
            if (dfs(dx,dy,step+1,ans+ans1+ans2))
                return true;
            isvisit[dy][dx] = 0;
        }
    }
    return false;
}
int main()
{
    int tt = 1;
    int counts;
    cin >> counts ;
    while( counts > 0 )
    {
        cin >> col >> row;
        counts--;
        memset(isvisit,0,sizeof(isvisit));
        isvisit[0][0] = 1;
        cout << "Scenario #"<< tt <<":" << endl;
        tt++;
        if ( row == 5 && col == 5)
        {
            cout << "A1B3A5C4A3B1D2E4C5A4B2D1C3B5D4E2C1A2B4D5E3C2E1D3E5" << endl << endl;
        }
        else
        {
            if ( col == 4 && row == 6 )
            {
                cout << "A1B3C1A2B4C2D4E2F4D3E1F3D2B1A3C4B2A4C3E4F2D1E3F1" << endl << endl;

            }
            else
            {
                if ( col == 6 && row == 4 )
                    cout << "A1B3A5C6D4B5D6C4D2B1A3C2B4A2C1D3B2D1C3D5B6A4C5A6" << endl << endl;/**打表法来降低时间复杂度*/
                else
                {
                    if(dfs(0,0,1,"A1"));
                    else
                        cout << "impossible" << endl <<endl;
                }
            }
        }

    }
}

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值