Description
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
Sample Input
3
1 1
2 3
4 3
Sample Output
Scenario #1:
A1
Scenario #2:
impossible
Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4
这个题目是深度优先搜索,并且记忆路径的,可以采用参数的方法来进行记录路径,还有题目要求的是按照字典序的方法输出,要注意搜索的方向,要先从行数最小的地方开始搜索,然后再按照行数增加的方法进行搜索,最后得出的方法就是按照字典序输出,对于字母可以对其行数进行类型转化,进行+‘A'处理之后可以转化为字符,对于一些运算量较大的数字,例如5, 5;4,6;等等之类的数字可以采用打表的方法来降低时间复杂度。
#include <iostream>
#include<algorithm>
#include<cstdio>
#include<stdio.h>
#include<queue>
#include<cstring>
#include<string>
using namespace std;
int isvisit[30][30];
int trace[30][30];
int row,col,times,index,runs,show;
string diaplay;
int dir[8][2]={{-1,-2},{1,-2},{-2,-1},{2,-1},{-2,1},{2,1},{-1,2},{1,2}};/**定义数字为x和y的变化方向*/
bool dfs(int x,int y,int step,string ans)
{
if ( step == row*col )
{
cout << ans << endl <<endl;
return true;
}
for ( int i = 0; i < 8;i++)
{
int dx = x + dir[i][0];
int dy = y + dir[i][1];
char ans1 = dy + 'A';
char ans2 = dx + '1';/**将坐标位置转化为字符*/
if ( dx >= 0 && dx < col && dy >= 0 && dy < row && isvisit[dy][dx] == 0 )
{
isvisit[dy][dx] = 1;
if (dfs(dx,dy,step+1,ans+ans1+ans2))
return true;
isvisit[dy][dx] = 0;
}
}
return false;
}
int main()
{
int tt = 1;
int counts;
cin >> counts ;
while( counts > 0 )
{
cin >> col >> row;
counts--;
memset(isvisit,0,sizeof(isvisit));
isvisit[0][0] = 1;
cout << "Scenario #"<< tt <<":" << endl;
tt++;
if ( row == 5 && col == 5)
{
cout << "A1B3A5C4A3B1D2E4C5A4B2D1C3B5D4E2C1A2B4D5E3C2E1D3E5" << endl << endl;
}
else
{
if ( col == 4 && row == 6 )
{
cout << "A1B3C1A2B4C2D4E2F4D3E1F3D2B1A3C4B2A4C3E4F2D1E3F1" << endl << endl;
}
else
{
if ( col == 6 && row == 4 )
cout << "A1B3A5C6D4B5D6C4D2B1A3C2B4A2C1D3B2D1C3D5B6A4C5A6" << endl << endl;/**打表法来降低时间复杂度*/
else
{
if(dfs(0,0,1,"A1"));
else
cout << "impossible" << endl <<endl;
}
}
}
}
}