Task03 Haar特征描述算子-人脸检测

本文详细介绍了Haar-like特征及其在人脸检测中的应用,包括特征类型、积分图计算方法及AdaBoost算法的使用。从边缘、线性和中心特征出发,解释了如何通过计算特征值来区分人脸和非人脸区域。
部署运行你感兴趣的模型镜像

3.1简介

Haar-like特征最早是由Papageorgiou等应用于人脸表示,在2001年,Viola和Jones两位大牛发表了经典的《Rapid Object Detection using a Boosted Cascade of Simple Features》和《Robust Real-Time Face Detection》,在AdaBoost算法的基础上,使用Haar-like小波特征和积分图方法进行人脸检测,他俩不是最早使用提出小波特征的,但是他们设计了针对人脸检测更有效的特征,并对AdaBoost训练出的强分类器进行级联。这可以说是人脸检测史上里程碑式的一笔了,也因此当时提出的这个算法被称为Viola-Jones检测器。又过了一段时间,Rainer Lienhart和Jochen Maydt两位大牛将这个检测器进行了扩展,最终形成了OpenCV现在的Haar分类器。
3.2 学习目标

理解Haar-like特征
理解积分图的计算算法
理解使用积分图来计算Haar特征值算法
理解Haar特征归一化算法
学会使用OpenCV自带的Haar分类器进行人脸检测
3.3 算法理论介绍

3.3.1 Haar-like 特征

Haar(哈尔)特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述特定走向(水平、垂直、对角)的结构。
对于图中的A, B和D这类特征,特征数值计算公式为:v=Σ白-Σ黑,而对于C来说,计算公式如下:v=Σ白-2*Σ黑;之所以将黑色区域像素和乘以2,是为了使两种矩形区域中像素数目一致。我们希望当把矩形放到人脸区域计算出来的特征值和放到非人脸区域计算出来的特征值差别越大越好,这样就可以用来区分人脸和非人脸。

通过改变特征模板的大小和位置,可在图像子窗口中穷举出大量的特征。上图的特征模板称为“特征原型”;特征原型在图像子窗口中扩展(平移伸缩)得到的特征称为“矩形特征”;矩形特征的值称为“特征值”。
上图中两个矩形特征,表示出人脸的某些特征。比如中间一幅表示眼睛区域的颜色比脸颊区域的颜色深,右边一幅表示鼻梁两侧比鼻梁的颜色要深。同样,其他目标,如眼睛等,也可以用一些矩形特征来表示。使用特征比单纯地使用像素点具有很大的优越性,并且速度更快。

矩形特征可位于图像任意位置,大小也可以任意改变,所以矩形特征值是矩形模版类别、矩形位置和矩形大小这三个因素的函数。故类别、大小和位置的变化,使得很小的检测窗口含有非常多的矩形特征,如:在24*24像素大小的检测窗口内矩形特征数量可以达到16万个。这样就有两个问题需要解决了:

(1)如何快速计算那么多的特征?—积分图大显神通;

(2)哪些矩形特征才是对分类器分类最有效的?—如通过AdaBoost算法来训练。

您可能感兴趣的与本文相关的镜像

Dify

Dify

AI应用
Agent编排

Dify 是一款开源的大语言模型(LLM)应用开发平台,它结合了 后端即服务(Backend as a Service) 和LLMOps 的理念,让开发者能快速、高效地构建和部署生产级的生成式AI应用。 它提供了包含模型兼容支持、Prompt 编排界面、RAG 引擎、Agent 框架、工作流编排等核心技术栈,并且提供了易用的界面和API,让技术和非技术人员都能参与到AI应用的开发过程中

基于NSGA-III算法求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文主要介绍基于NSGA-III算法求解微电网多目标优化调度的研究,并提供了完整的Matlab代码实现。研究聚焦于微电网系统中多个相互冲突的目标(如运行成本最小化、碳排放最低、可再生能源利用率最大化等)之间的权衡优化问题,采用NSGA-III(非支配排序遗传算法III)这一先进的多目标进化算法进行求解。文中详细阐述了微电网的数学模型构建、多目标优化问题的定义、NSGA-III算法的核心机制及其在该问题上的具体应用流程,并通过仿真案例验证了算法的有效性和优越性。此外,文档还提及该资源属于一个更广泛的MATLAB仿真辅导服务体系,涵盖智能优化、机器学习、电力系统等多个科研领域。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及工程技术人员。; 使用场景及目标:①学习和掌握NSGA-III等先进多目标优化算法的原理与实现;②研究微电网能量管理、多目标优化调度策略;③获取可用于科研或课程设计的Matlab代码参考,快速搭建仿真模型。; 阅读建议:此资源以算法实现为核心,建议读者在学习时结合代码与理论背景,深入理解目标函数的设计、约束条件的处理以及NSGA-III算法参数的设置。同时,可利用文中提供的网盘链接获取更多相关资源,进行横向对比和扩展研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值