__lookup_processor_type函数:
__lookup_processor_type:
ARM( adr r3, 3f )
ARM( ldmda r3, {r5 - r7} )
THUMB( adr r3, 3f+4 )
THUMB( ldmdb r3, {r5 - r7} )
THUMB( sub r3, r3, #4 )
sub r3, r3, r7 @ get offset between virt&phys
add r5, r5, r3 @ convert virt addresses to
add r6, r6, r3 @ physical address space
1: ldmia r5, {r3, r4} @ value, mask
and r4, r4, r9 @ mask wanted bits
teq r3, r4
beq 2f
add r5, r5, #PROC_INFO_SZ @ sizeof(proc_info_list)
cmp r5, r6
blo 1b
mov r5, #0 @ unknown processor
2: mov pc, lr
ENDPROC(__lookup_processor_type)
/*
* Look in <asm/procinfo.h> and arch/arm/kernel/arch.[ch] for
* more information about the __proc_info and __arch_info structures.
*/
.long __proc_info_begin
.long __proc_info_end
3: .long .
.long __arch_info_begin
.long __arch_info_end
语句“adr r3, 3f”向前寻找到标号3的地址,赋给寄存器r3;
语句“ldmda r3, {r5 - r7}”将寄存器r3所指地址处的数据分别读入r5,r6,r7,由于ldmda是“过后减少装载”方式,因此r6与r7分别读入的应是__proc_info_end和__proc_info_begin;
函数返回后,有一个操作:
movs r10, r5
将寄存器r5中的proc_info入口地址保存在寄存器r10中,这是为了后来调用__create_page_tables准备的
__lookup_machine_type函数:
__lookup_machine_type:
adr r3, 3b
ldmia r3, {r4, r5, r6}
sub r3, r3, r4 @ get offset between virt&phys
add r5, r5, r3 @ convert virt addresses to
add r6, r6, r3 @ physical address space
1: ldr r3, [r5, #MACHINFO_TYPE] @ get machine type
teq r3, r1 @ matches loader number?
beq 2f @ found
add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc
cmp r5, r6
blo 1b
mov r5, #0 @ unknown machine
2: mov pc, lr
ENDPROC(__lookup_machine_type)
此函数紧挨着__lookup_processor_type,与__lookup_processor_type共用标号3,不同的是语句“adr r3, 3b”为向后查找标号3,将标号3的地址赋给寄存器r3;
接下来的语句“ldmia r3, {r4, r5, r6}”采用了过后增加装载指令查表,将__arch_info_begin、__arch_info_end地地址分别装入寄存器r5、r6;
回顾一下标号3:
/*
* Look in <asm/procinfo.h> and arch/arm/kernel/arch.[ch] for
* more information about the __proc_info and __arch_info structures.
*/
.long __proc_info_begin
.long __proc_info_end
3: .long .
.long __arch_info_begin
.long __arch_info_end
可见,__lookup_processor_type函数通过ldmda指令查找__proc_info_表格,__lookup_machine_type函数则通过ldmia指令查找__arch_info_表格。
__arch_info_表格的生成,可见arch/arm/include/asm/mach/arch.h文件中定义的宏MACHINE_START:
/*
* Set of macros to define architecture features. This is built into
* a table by the linker.
*/
#define MACHINE_START(_type,_name) /
static const struct machine_desc __mach_desc_##_type /
__used /
__attribute__((__section__(".arch.info.init"))) = { /
.nr = MACH_TYPE_##_type, /
.name = _name,
#define MACHINE_END /
};
以TI OMAP3 参考板为例,MACHINE_START表格的具体填写,在arch/arm/mach-omap2/board-zoom2.c文件中:
MACHINE_START(OMAP_ZOOM2, "OMAP ZOOM2 board")
.phys_io = 0x48000000,
.io_pg_offst = ((0xd8000000) >> 18) & 0xfffc,
.boot_params = 0x80000100,
.map_io = omap_ldp_map_io,
.init_irq = omap_ldp_init_irq,
.init_machine = omap_ldp_init,
.timer = &omap_timer,
MACHINE_END
回到__lookup_machine_type函数,寄存器r1在kernel入口时已被赋予了type的数值,从u-boot代码include/asm-arm/mach-types.h文件中定义:
#define MACH_TYPE_OMAP_ZOOM2 1967
可知,boot向Kernel传入的数据应为1967,kernel中,OMAP_ZOOM2对应的type值由脚本文件arch/arm/tools/mach-types指定,该脚本中,行
omap_zoom2 MACH_OMAP_ZOOM2 OMAP_ZOOM2 1967
指定OMAP_ZOOM2对应的type值为1967,因此,函数__lookup_machine_type的查表过程成功,寄存器r5中返回ZOOM2对应信息的数据结构首地址;函数返回后,有一个操作:
movs r8, r5
将寄存器r5中的__arch_info入口地址保存在寄存器r8中,这也是为了后来调用__create_page_tables准备的
需要关注的数据结构machine_desc(在文件arch/arm/include/asm/mach/arch.h中定义):
struct machine_desc {
/*
* Note! The first four elements are used
* by assembler code in head.S, head-common.S
*/
unsigned int nr; /* architecture number */
unsigned int phys_io; /* start of physical io */
unsigned int io_pg_offst; /* byte offset for io
* page tabe entry */
const char *name; /* architecture name */
unsigned long boot_params; /* tagged list */
unsigned int video_start; /* start of video RAM */
unsigned int video_end; /* end of video RAM */
unsigned int reserve_lp0 :1; /* never has lp0 */
unsigned int reserve_lp1 :1; /* never has lp1 */
unsigned int reserve_lp2 :1; /* never has lp2 */
unsigned int soft_reboot :1; /* soft reboot */
void (*fixup)(struct machine_desc *,
struct tag *, char **,
struct meminfo *);
void (*map_io)(void);/* IO mapping function */
void (*init_irq)(void);
struct sys_timer *timer; /* system tick timer */
void (*init_machine)(void);
};
本文详细解析了ARM架构下Linux内核启动过程中两个关键函数__lookup_processor_type与__lookup_machine_type的工作原理。介绍了如何通过ARM汇编指令实现对处理器类型及机器类型的查找,并解释了这些函数如何与硬件信息交互以初始化系统。
2800

被折叠的 条评论
为什么被折叠?



