相关的image 训练和测试集,和lr_utils文件
可以去 https://blog.youkuaiyun.com/thank_t_f/article/details/79867164
里面找到第一周的作业下载下来。
#---------------------
#1导入各种包
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
%matplotlib inline
#------------------------------------------------------
#2数据准备。
#加载数据集 使用的是load_datase函数,这个函数自己定义的文件 lr_utils 中
# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
#通过得到的数据集得到训练集和测试集内容的个数,和图片的width和higth值
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
#将数据集编成m_train/m_test行 ,列数交由系统自己推算。 实际意义就是让每一列所有数据表示一张图片。
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
#为了方便计算,对数据进行集中和标准化。
train_set_x = train_set_x_flatten/255
test_set_x = test_set_x_flatten/255
#---------------------------------------------------------------------------
#-----------------------------------------------------------------------------
#3设计各种函数。
#定义辅助函数 sigmoid()
# Compute the sigmoid of z
# Arguments:
# z -- A scalar or numpy array of any size.
# Return:
# s -- sigmoid(z)
def sigmoid(z):
s = 1 / (1 + np.exp(-z))
return s
#初始化w1,w2,d
# GRADED FUNCTION: initialize_with_zeros
# This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
# Argument:
# dim -- size of the w vector we want (or number of parameters in this case)
# Returns:
# w -- initialized vector of shape (dim, 1)
# b -- initialized scalar (corresponds to the bias)
def initialize_with_zeros(dim):
w = np.zeros((dim, 1))
b = 0
assert(w.shape == (dim, 1))
assert(isinstance(b, float) or isinstance(b, int))
return w, b
#对于单个样本的使用前向后向反馈更新w,d
# GRADED FUNCTION: propagate
# Implement the cost function and its gradient for the propagation explained above
# Arguments:
# w -- weights, a numpy array of size (num_px * num_px * 3, 1)
# b -- bias, a scalar
# X -- data of size (num_px * num_px * 3, number of examples)
# Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
# Return:
# cost -- negative log-likelihood cost for logistic regression
# dw -- gradient of the loss with respect to w, thus same shape as w
# db -- gradient of the loss with respect to b, thus same shape as b
# Tips:
# - Write your code step by step for the propagation. np.log(), np.dot()
def propagate(w, b, X, Y):
m = X.shape[1]
# FORWARD PROPAGATION (FROM X TO COST)
A = sigmoid(np.dot(w.T, X) + b) # compute activation
cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A)) # compute cost
# BACKWARD PROPAGATION (TO FIND GRAD)
dw = 1 / m * np.dot(X, (A - Y).T)
db = 1 / m * np.sum(A - Y)
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
#梯度优化函数
# GRADED FUNCTION: optimize
# This function optimizes w and b by running a gradient descent algorithm
# Arguments:
# w -- weights, a numpy array of size (num_px * num_px * 3, 1)
# b -- bias, a scalar
# X -- data of shape (num_px * num_px * 3, number of examples)
# Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
# num_iterations -- number of iterations of the optimization loop
# learning_rate -- learning rate of the gradient descent update rule
# print_cost -- True to print the loss every 100 steps
# Returns:
# params -- dictionary containing the weights w and bias b
# grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
# costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
# Tips:
# You basically need to write down two steps and iterate through them:
# 1) Calculate the cost and the gradient for the current parameters. Use propagate().
# 2) Update the parameters using gradient descent rule for w and b.
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
costs = []
for i in range(num_iterations):
# Cost and gradient calculation (≈ 1-4 lines of code)
grads, cost = propagate(w, b, X, Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule (≈ 2 lines of code)
w = w - learning_rate * dw
b = b - learning_rate * db
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 training examples
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
#使用测试集进行测试。
# Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
# Arguments:
# w -- weights, a numpy array of size (num_px * num_px * 3, 1)
# b -- bias, a scalar
# X -- data of size (num_px * num_px * 3, number of examples)
# Returns:
# Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0], 1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
if A[0, i] <= 0.5:
Y_prediction[0, i] = 0
else:
Y_prediction[0, i] = 1
assert(Y_prediction.shape == (1, m))
return Y_prediction
#J将前几个函数集合起来使用构成训练模型
# GRADED FUNCTION: model
# Builds the logistic regression model by calling the function you've implemented previously
# Arguments:
# X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
# Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
# X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
# Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
# num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
# learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
# print_cost -- Set to true to print the cost every 100 iterations
# Returns:
# d -- dictionary containing information about the model.
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
# initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0])
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples (≈ 2 lines of code)
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)