Parencodings
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 25202 | Accepted: 14863 |
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed
string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
解题思路
其实这个题也算的上是半个水题吧, 在我们的计划安排中是用模拟法做, 然后去百度了一下不知道什么是模拟法
就用数组做了,不知道开多大的数组就开的大一点,然后竟然A了
因为我比较渣,所以写的代码都是简单易懂但是很麻烦
//左0, 右1
#include<stdio.h>
#include<string.h>
int s[10000];
int main()
{
int t, n;
int k, r;
scanf("%d",&t);
while(t--)
{
int flag = 0;
k = 0;
int left = 0;
memset(s, 0, sizeof(s));
scanf("%d",&n);
for(int i = 0; i < n; i++)
{
scanf("%d",&r);
while(left < r)
{
s[k++] = 0;//用一个数组来存储0和1
left++;
}
s[k++] = 1;
}
for(int i = 0; i < k; i++)
{
int count = 0; //记前面位置出现了几个右括号
if(s[i] == 1) //出现右括号,找离他最近的左括号
for(int j = i; j >= 0; j--)
{
if(s[j] == 1)
count++;
else if(s[j] == 0)
{
if(flag == 0) //第一个前面不输出空格
{
printf("%d",i-j-count+1);//计算出距离,然后减去右括号
flag = 1;
}
else
printf(" %d",i-j-count+1);
s[j] = 2;//将已经找完的右括号随便赋了个值
break;
}
}
}
printf("\n");
}
return 0;
}