#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;
const int maxn = 1E5 + 10;
int kase, T, n;
struct Point
{
double x, y;
Point(double x = 0, double y = 0): x(x), y(y) {}
};
typedef Point Vector;
typedef vector<Point> Polygon;
Vector operator +(Vector A, Vector B)//
{
return Vector(A.x + B.x, A.y + B.y);
}
Vector operator -(Point A, Point B)//
{
return Vector(A.x - B.x , A.y - B.y);
}
Vector operator *(Vector A, double p)//
{
return Vector(A.x * p, A.y * p);
}
Vector operator /(Vector A, double p)//
{
return Vector(A.x / p, A.y / p);
}
bool operator <(const Point &a, const Point &b)//
{
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
const double eps = 1e-4;
int dcmp(double x)//
{
if (fabs(x) < eps) return 0;
else return x < 0 ? -1 : 1;
}
bool operator ==(const Point &a, const Point &b)//
{
return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}
double Dot(Vector A, Vector B)//
{
return A.x * B.x + A.y * B.y;
}
double Length(Vector A)//
{
return sqrt(Dot(A, A));
}
double Cross(Vector A, Vector B)//
{
return A.x * B.y - A.y * B.x;
}
double Angle(Vector A, Vector B)//
{
return acos(Dot(A, B) / Length(A) / Length(B));
}
double Distance(Point A, Point B)
{
return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));
}
double Distance2(Point A, Point B)
{
return (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y);
}
struct Circle
{
Point c;
double r;
Circle() {};
Circle(Point c, double r): c(c), r(r) {}
bool operator < (const Circle &other) const
{
if (dcmp(c.x - other.c.x) != 0) return c.x < other.c.x;
else if (dcmp(c.y - other.c.y) != 0) return c.y < other.c.y;
else return r < other.r;
}
bool operator == (const Circle &other) const
{
if (dcmp(c.x - other.c.x) == 0 && dcmp(c.y - other.c.y) == 0 && dcmp(r - other.r) == 0) return 1;
else return 0;
}
Point point(double a)
{
return Point(c.x + cos(a) * r, c.y + sin(a) * r);
}
bool OnCircle(Point A)
{
if (dcmp(Distance(c, A) - r) == 0) return 1;
else return 0;
}
};
Circle c[maxn];
Circle read_circle()
{
double X, Y, R;
scanf("%lf%lf%lf", &X, &Y, &R);
return Circle(Point(X, Y), R);
}
struct Math_Line
{
double A, B, C;
Math_Line(Point a, Point b)
{
if (dcmp(a.x - b.x) == 0) {A = 1, B = 0, C = -1 * a.x;}
else
{
A = b.y - a.y;
B = a.x - b.x;
C = a.x * (a.y - b.y) + a.y;
}
}
Math_Line(Circle a, Circle b)
{
A = (b.c.x - a.c.x) * 2;
B = (b.c.y - a.c.y) * 2;
C = a.c.x * a.c.x - b.c.x * b.c.x + a.c.y * a.c.y - b.c.y * b.c.y - a.r * a.r + b.r * b.r;
}
Math_Line(double A = 0, double B = 0, double C = 0): A(A), B(B), C(C) {}
int Line_State(const Math_Line &other) const
{
if (dcmp(A * other.B - B * other.A) == 0)
{
if (dcmp(C * other.B - B * other.C) == 0 && dcmp(C * other.A - A * other.C) == 0)
return 2;// 重合
else return 0;//平行
}
else return 1;//相交
}
Point GetLineIntersection(const Math_Line &other) const
{
if (dcmp(B) == 0) return Point(-C / A, (other.A * (-C / A) + other.C) / (-other.B));
else if (dcmp(other.B) == 0) return Point(-other.C / other.A, (A * (-other.C / other.A) + C) / (-B));
else return Point((other.C * B - C * other.B) / (A * other.B - other.A * B), (A * ((other.C * B - C * other.B) / (A * other.B - other.A * B)) + C) / (-B));
}
};
Circle Center;
int solve()
{
int ans = 0;
for (int i = 2; i <= n; i++)
if (c[i].c == c[i - 1].c) return -1;
if (n <= 2) return -2;
else
{
Math_Line l1(c[1], c[2]);
bool first = 1; Point pre;
for (int i = 2; i < n; i++)
{
int k = l1.Line_State(Math_Line(c[i], c[i + 1]));
if (k == 0) return -1;
else if (k == 1)
if (first)
{
first = 0;
pre = l1.GetLineIntersection(Math_Line(c[i], c[i + 1]));
double R = (Distance2(pre, c[1].c) - c[1].r * c[1].r);
if (dcmp(R) <= 0) return -1;
Center = Circle(pre, sqrt(R));
}
else if (!(l1.GetLineIntersection(Math_Line(c[i], c[i + 1])) == pre)) return -1;
}
if (first == 0) return 1;
else return -2;
}
}
int main(int argc, char const *argv[])
{
while (~scanf("%d", &n) && n)
{
for (int i = 1; i <= n; i++)
c[i] = read_circle();
sort(c + 1, c + n + 1);
n = unique(c + 1, c + n + 1) - (c + 1);
int ans = solve();
if (ans < 0) printf("%d\n", ans);
else printf("%.10lf %.10lf %.10lf\n", Center.c.x, Center.c.y, Center.r);
}
return 0;
}
两个圆的正交圆圆心在直线上,满足到两圆心距离之差等于半径之差。
特殊情况:两圆重合,只计算一个即可,两元同心,必然无解。
那么两条不重合直线就可以确定唯一的圆心,去计算R是否相同即可。
你问我所有直线都重合怎么办?实际只有一条直线,那么就是有多解。
对负数开方居然导致presentation error,令我十分吃惊。