C++手撕红黑树

1、红黑树的概念

红黑树是一棵二叉搜索树,他的每个结点增加⼀个存储位来表示结点的颜色,可以是红色或者黑色。通过对任何一条从根到叶子的路径上各个结点的颜色进行约束,红黑树确保没有一条路径会比其他路径长出2倍,因而是接近平衡的。

红黑树的规则:
1. 每个结点不是红色就是黑色。
2. 根节点是黑色的。
3. 如果一个节点是红色的,则它的两个孩子结点必须是黑色的,也就是说任意一条路径不会有连续的红色结点。
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点。
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)。

说明:《算法导论》等书籍上补充了一条每个叶子结点(NIL)都是黑色的规则。他这里所指的叶子结点不是传统的意义上的叶子结点,而是我们说的空结点,有些书籍上也把NIL叫做外部结点。NIL是为了方便准确的标识出所有路径,《算法导论》在后续讲解实现的细节中也忽略了NIL结点,所以我们知道一下这个概念即可。

在这里插入图片描述


思考一下,红黑树如何确保最长路径不超过最短路径的2倍的?
在这里插入图片描述


红黑树的效率分析:
在这里插入图片描述

红黑树最好情况下就是满二叉树,那么高度为logN,而最长就是2logN,因此时间复杂度还是O(logN)。
红黑树的表达相对AVL树要抽象一些,AVL树通过高度差直观的控制了平衡。红黑树通过4条规则的颜色约束,间接的实现了近似平衡,他们效率都是同一档次,但是相对而言,插如相同数量的结点,红黑树的旋转次数是更少的,因为他对平衡的控制没那么严格。


2、红黑树的结构

红黑树节点也是需要保存父节点的指针,方便在向上调整的时候快速找到父节点。颜色的控制我们通过枚举类型来实现。

enum Colour {
	RED,
	BLACK
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Colour _col;
	
	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:

private:

private:
	Node* _root = nullptr;
};

3、红黑树的插入

3.1、大概过程

插入过程和AVL树相似,不过在AVL树插入后需要向上调整平衡因子,在红黑树这里插入后需要向上调整节点的颜色。
如果插入的是根节点,记得将插入节点的颜色修改为黑色,因为根节点必须是黑色,而我们节点的构造函数创建出的节点默认是红色。

bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		_root->_col = BLACK;
		return true;
	}
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}
	cur = new Node(kv);
	if (parent->_kv.first < kv.first)
		parent->_right = cur;
	else
		parent->_left = cur;
	cur->_parent = parent;

	// 调整颜色
	// ....

	return true;
}

思考:插入的时候是插入红色节点,还是插入黑色节点?
如果插入黑色节点,那么就会破坏规则4,不容易调整。如果插入红色节点,可能破坏规则3,破坏规则3相对于破坏规则4调整来的容易。因此我们要插入红色节点。


3.2、插入情况分析

旋转在上篇AVL树中已有讲解,对旋转有疑问可移步:C++手撕AVL树
在这里插入图片描述

在这里插入图片描述


3.3、调整代码

while (parent && parent->_col == RED)
{
	Node* grandfather = parent->_parent;
	if (grandfather->_left == parent)
	{
		Node* uncle = grandfather->_right;
		if (uncle && uncle->_col == RED)
		{
			parent->_col = uncle->_col = BLACK;
			grandfather->_col = RED;
			cur = grandfather;
			parent = cur->_parent;
		}
		else
		{
			if (parent->_left == cur)
			{
				RotateR(grandfather);
				grandfather->_col = RED;
				parent->_col = BLACK;
			}
			else
			{
				RotateL(parent);
				RotateR(grandfather);
				grandfather->_col = RED;
				cur->_col = BLACK;
			}
			break;
		}
	}
	else
	{
		Node* uncle = grandfather->_left;
		if (uncle && uncle->_col == RED)
		{
			parent->_col = uncle->_col = BLACK;
			grandfather->_col = RED;
			cur = grandfather;
			parent = cur->_parent;
		}
		else
		{
			if (parent->_right == cur)
			{
				RotateL(grandfather);
				grandfather->_col = RED;
				parent->_col = BLACK;
			}
			else
			{
				RotateR(parent);
				RotateL(grandfather);
				grandfather->_col = RED;
				cur->_col = BLACK;
			}
			break;
		}
	}
}
_root->_col = BLACK;

当向上调整到根节点时,cur等于当前根节点,parent不存在,所以跳出循环,但是当前根节点的颜色为红色,需要调整成黑色,所以在循环外我们需要加一句:_root->_col = BLACK; 然后返回true。另外循环内的break也可以不写,因为当旋转后parent指针所指向的节点一定是黑色节点。


3.4、旋转代码

旋转在上篇AVL树中已有讲解,对旋转有疑问可移步:C++手撕AVL树

void RotateL(Node* parent)
{
	Node* cur = parent->_right;
	Node* curleft = cur->_left;
	Node* ppnode = parent->_parent;
	parent->_right = curleft;
	if (curleft)
		curleft->_parent = parent;
	cur->_left = parent;
	parent->_parent = cur;
	if (_root == parent)
	{
		_root = cur;
		cur->_parent = nullptr;
	}
	else
	{
		if (ppnode->_left == parent)
			ppnode->_left = cur;
		else
			ppnode->_right = cur;
		cur->_parent = ppnode;
	}
}

void RotateR(Node* parent)
{
	Node* cur = parent->_left;
	Node* curright = cur->_right;
	Node* ppnode = parent->_parent;
	parent->_left = curright;
	if (curright)
		curright->_parent = parent;
	cur->_right = parent;
	parent->_parent = cur;
	if (_root == parent)
	{
		_root = cur;
		cur->_parent = nullptr;
	}
	else
	{
		if (ppnode->_left == parent)
			ppnode->_left = cur;
		else
			ppnode->_right = cur;
		cur->_parent = ppnode;
	}
}

4、红黑树的删除

在这里插入图片描述

代码:

bool Erase(const K& key)
{
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			if (cur->_left == nullptr)
			{
				if (_root == cur)
				{
					_root = cur->_right;
					if (_root)
					{
						_root->_parent = nullptr;
						_root->_col = BLACK;
					}
					delete cur;
					return true;
				}
			}
			else if (cur->_right == nullptr)
			{
				if (_root == cur)
				{
					_root = cur->_left;
					if (_root)
					{
						_root->_parent = nullptr;
						_root->_col = BLACK;
					}
					delete cur;
					return true;
				}
			}
			else
			{
				parent = cur;
				Node* rightMin = cur->_right;
				while (rightMin->_left)
				{
					parent = rightMin;
					rightMin = rightMin->_left;
				}
				cur->_kv = rightMin->_kv;
				cur = rightMin;
			}
			break;
		}
	}
	if (cur == nullptr) return false;
	Node* del = cur;
	Node* delParent = parent;
	if (cur->_col == BLACK && !cur->_left && !cur->_right)
	{
		while (parent)
		{
			if (parent->_left == cur)
			{
				Node* brother = parent->_right;
				if (brother->_col == RED)
				{
					brother->_col = BLACK;
					parent->_col = RED;
					RotateL(parent);
					brother = parent->_right;
				}
				if ((!brother->_left || brother->_left->_col == BLACK)
					&& (!brother->_right || brother->_right->_col == BLACK))
				{
					brother->_col = RED;
					if (parent->_col == RED)
					{
						parent->_col = BLACK;
						break;
					}
					cur = parent;
					parent = cur->_parent;
				}
				else
				{
					if (!brother->_right || brother->_right->_col == BLACK)
					{
						brother->_left->_col = BLACK;
						brother->_col = RED;
						RotateR(brother);
						brother = parent->_right;
					}
					brother->_right->_col = BLACK;
					brother->_col = parent->_col;
					parent->_col = BLACK;
					RotateL(parent);
					break;
				}
			}
			else
			{
				Node* brother = parent->_left;
				if (brother->_col == RED)
				{
					brother->_col = BLACK;
					parent->_col = RED;
					RotateR(parent);
					brother = parent->_left;
				}
				if ((!brother->_left || brother->_left->_col == BLACK)
					&& (!brother->_right || brother->_right->_col == BLACK))
				{
					brother->_col = RED;
					if (parent->_col == RED)
					{
						parent->_col = BLACK;
						break;
					}
					cur = parent;
					parent = cur->_parent;
				}
				else
				{
					if (!brother->_left || brother->_left->_col == BLACK)
					{
						brother->_right->_col = BLACK;
						brother->_col = RED;
						RotateL(brother);
						brother = parent->_left;
					}
					brother->_left->_col = BLACK;
					brother->_col = parent->_col;
					parent->_col = BLACK;
					RotateR(parent);
					break;
				}
			}
		}
	}
	cur = del, parent = delParent;
	if (cur->_left == nullptr)
	{
		if (parent->_left == cur)
			parent->_left = cur->_right;
		else
			parent->_right = cur->_right;
		if (cur->_right)
		{
			cur->_right->_parent = parent;
			cur->_right->_col = BLACK;
		}
	}
	else
	{
		if (parent->_left == cur)
			parent->_left = cur->_left;
		else
			parent->_right = cur->_left;
		if (cur->_left)
		{
			cur->_left->_parent = parent;
			cur->_left->_col = BLACK;
		}
	}
	delete cur;
	return true;
}

5、红黑树的查找

Node* Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < key)
			cur = cur->_right;
		else if (cur->_kv.first > key)
			cur = cur->_left;
		else
			return cur;
	}
	return nullptr;
}

6、红黑树的验证

bool IsBalance()
{
	return IsBalance(_root);
}

bool IsBalance(Node* root)
{
	if (root == nullptr) return true;
	if (root->_col != BLACK) return false;
	int benchmark = 0;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_col == BLACK) benchmark++;
		cur = cur->_left;
	}
	return CheckColour(root, 0, benchmark);
}

bool CheckColour(Node* root, int blacknum, int benchmark)
{
	if (root == nullptr)
	{
		if (blacknum != benchmark) return false;
		return true;
	}
	if (root->_col == BLACK) blacknum++;
	if (root->_col == RED && root->_parent && root->_parent->_col == RED)
	{
		cout << root->_kv.first << "出现连续的红色节点" << endl;
		return false;
	}
	return CheckColour(root->_left, blacknum, benchmark)
		&& CheckColour(root->_right, blacknum, benchmark);
}

IsBalance用来判断我们的树是否满足红黑树规则。首先判断根节点是不是黑色节点,不是直接返回false。紧接着我们随意计算一条路径上黑色节点的个数,将计算出来的benchmark作为基准值传入CheckColour函数中判断。
在CheckColor函数中,如果当前节点为空指针,说明一条路径已经结束,我们判断这条路径上的黑色节点数目和我们所给的基准值是否相同,不相同说明不是红黑树,直接返回false。如果当前节点不是空节点就往后走,判断当前节点是否是黑色节点,如果是就让这条路径上的黑色节点++,同时判断当前节点及其父节点是否是连续的红色节点,然后递归判断它的左子树和右子树。
如果基准值是错的呢?也无所谓,因为如果基准值是错的,在某条路径结束后黑色节点数就不会等于基准值,照样返回false。


7、红黑树的其他函数

这里实现构造函数、拷贝构造函数、赋值运算符重载、析构函数、中序遍历、高度函数。基本上类似前面的二叉搜索树。

RBTree()
	:_root(nullptr)
{}

RBTree(const RBTree<K, V>& t)
	:_root(nullptr)
{
	_root = Copy(t._root, nullptr);
}

RBTree<K, V>& operator=(RBTree<K, V> t)
{
	swap(_root, t._root);
	return *this;
}

~RBTree()
{
	Destroy(_root);
}

int Height()
{
	return Height(_root);
}

void InOrder()
{
	InOrder(_root);
	cout << endl;
}

Node* Copy(Node* root, Node* parent)
{
	if (root == nullptr) return nullptr;
	Node* copy = new Node(root->_kv);
	copy->_col = root->_col;
	copy->_parent = parent;
	copy->_left = Copy(root->_left, copy);
	copy->_right = Copy(root->_right, copy);
	return copy;
}

void Destroy(Node*& root)
{
	if (root == nullptr) return;
	Destroy(root->_left);
	Destroy(root->_right);
	delete root;
	root = nullptr;
}

void InOrder(Node* root)
{
	if (root == nullptr) return;
	InOrder(root->_left);
	cout << root->_kv.first << " ";
	InOrder(root->_right);
}

int Height(Node* root)
{
	if (root == nullptr) return 0;
	int left = Height(root->_left);
	int right = Height(root->_right);
	return left > right ? left + 1 : right + 1;
}

完整代码

#pragma once

enum Colour {
	RED,
	BLACK
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Colour _col;
	
	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	RBTree()
		:_root(nullptr)
	{}

	RBTree(const RBTree<K, V>& t)
		:_root(nullptr)
	{
		_root = Copy(t._root, nullptr);
	}

	RBTree<K, V>& operator=(RBTree<K, V> t)
	{
		swap(_root, t._root);
		return *this;
	}

	~RBTree()
	{
		Destroy(_root);
	}

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
			parent->_right = cur;
		else
			parent->_left = cur;
		cur->_parent = parent;
	
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					if (parent->_left == cur)
					{
						RotateR(grandfather);
						grandfather->_col = RED;
						parent->_col = BLACK;
					}
					else
					{
						RotateL(parent);
						RotateR(grandfather);
						grandfather->_col = RED;
						cur->_col = BLACK;
					}
					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					if (parent->_right == cur)
					{
						RotateL(grandfather);
						grandfather->_col = RED;
						parent->_col = BLACK;
					}
					else
					{
						RotateR(parent);
						RotateL(grandfather);
						grandfather->_col = RED;
						cur->_col = BLACK;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return true;
	}

	bool Erase(const K& key)
	{
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				if (cur->_left == nullptr)
				{
					if (_root == cur)
					{
						_root = cur->_right;
						if (_root)
						{
							_root->_parent = nullptr;
							_root->_col = BLACK;
						}
						delete cur;
						return true;
					}
				}
				else if (cur->_right == nullptr)
				{
					if (_root == cur)
					{
						_root = cur->_left;
						if (_root)
						{
							_root->_parent = nullptr;
							_root->_col = BLACK;
						}
						delete cur;
						return true;
					}
				}
				else
				{
					parent = cur;
					Node* rightMin = cur->_right;
					while (rightMin->_left)
					{
						parent = rightMin;
						rightMin = rightMin->_left;
					}
					cur->_kv = rightMin->_kv;
					cur = rightMin;
				}
				break;
			}
		}
		if (cur == nullptr) return false;
		Node* del = cur;
		Node* delParent = parent;
		if (cur->_col == BLACK && !cur->_left && !cur->_right)
		{
			while (parent)
			{
				if (parent->_left == cur)
				{
					Node* brother = parent->_right;
					if (brother->_col == RED)
					{
						brother->_col = BLACK;
						parent->_col = RED;
						RotateL(parent);
						brother = parent->_right;
					}
					if ((!brother->_left || brother->_left->_col == BLACK)
						&& (!brother->_right || brother->_right->_col == BLACK))
					{
						brother->_col = RED;
						if (parent->_col == RED)
						{
							parent->_col = BLACK;
							break;
						}
						cur = parent;
						parent = cur->_parent;
					}
					else
					{
						if (!brother->_right || brother->_right->_col == BLACK)
						{
							brother->_left->_col = BLACK;
							brother->_col = RED;
							RotateR(brother);
							brother = parent->_right;
						}
						brother->_right->_col = BLACK;
						brother->_col = parent->_col;
						parent->_col = BLACK;
						RotateL(parent);
						break;
					}
				}
				else
				{
					Node* brother = parent->_left;
					if (brother->_col == RED)
					{
						brother->_col = BLACK;
						parent->_col = RED;
						RotateR(parent);
						brother = parent->_left;
					}
					if ((!brother->_left || brother->_left->_col == BLACK)
						&& (!brother->_right || brother->_right->_col == BLACK))
					{
						brother->_col = RED;
						if (parent->_col == RED)
						{
							parent->_col = BLACK;
							break;
						}
						cur = parent;
						parent = cur->_parent;
					}
					else
					{
						if (!brother->_left || brother->_left->_col == BLACK)
						{
							brother->_right->_col = BLACK;
							brother->_col = RED;
							RotateL(brother);
							brother = parent->_left;
						}
						brother->_left->_col = BLACK;
						brother->_col = parent->_col;
						parent->_col = BLACK;
						RotateR(parent);
						break;
					}
				}
			}
		}
		cur = del, parent = delParent;
		if (cur->_left == nullptr)
		{
			if (parent->_left == cur)
				parent->_left = cur->_right;
			else
				parent->_right = cur->_right;
			if (cur->_right)
			{
				cur->_right->_parent = parent;
				cur->_right->_col = BLACK;
			}
		}
		else
		{
			if (parent->_left == cur)
				parent->_left = cur->_left;
			else
				parent->_right = cur->_left;
			if (cur->_left)
			{
				cur->_left->_parent = parent;
				cur->_left->_col = BLACK;
			}
		}
		delete cur;
		return true;
	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
				cur = cur->_right;
			else if (cur->_kv.first > key)
				cur = cur->_left;
			else
				return cur;
		}
		return nullptr;
	}

	bool IsBalance()
	{
		return IsBalance(_root);
	}

	int Height()
	{
		return Height(_root);
	}

	void InOrder()
	{
		InOrder(_root);
		cout << endl;
	}

private:
	void InOrder(Node* root)
	{
		if (root == nullptr) return;
		InOrder(root->_left);
		cout << root->_kv.first << " ";
		InOrder(root->_right);
	}

	int Height(Node* root)
	{
		if (root == nullptr) return 0;
		int left = Height(root->_left);
		int right = Height(root->_right);
		return left > right ? left + 1 : right + 1;
	}

	Node* Copy(Node* root, Node* parent)
	{
		if (root == nullptr) return nullptr;
		Node* copy = new Node(root->_kv);
		copy->_col = root->_col;
		copy->_parent = parent;
		copy->_left = Copy(root->_left, copy);
		copy->_right = Copy(root->_right, copy);
		return copy;
	}

	void Destroy(Node*& root)
	{
		if (root == nullptr) return;
		Destroy(root->_left);
		Destroy(root->_right);
		delete root;
		root = nullptr;
	}

	bool IsBalance(Node* root)
	{
		if (root == nullptr) return true;
		if (root->_col != BLACK) return false;
		int benchmark = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK) benchmark++;
			cur = cur->_left;
		}
		return CheckColour(root, 0, benchmark);
	}

	bool CheckColour(Node* root, int blacknum, int benchmark)
	{
		if (root == nullptr)
		{
			if (blacknum != benchmark) return false;
			return true;
		}
		if (root->_col == BLACK) blacknum++;
		if (root->_col == RED && root->_parent && root->_parent->_col == RED)
		{
			cout << root->_kv.first << "出现连续的红色节点" << endl;
			return false;
		}
		return CheckColour(root->_left, blacknum, benchmark)
			&& CheckColour(root->_right, blacknum, benchmark);
	}

	void RotateL(Node* parent)
	{
		Node* cur = parent->_right;
		Node* curleft = cur->_left;
		Node* ppnode = parent->_parent;
		parent->_right = curleft;
		if (curleft)
			curleft->_parent = parent;
		cur->_left = parent;
		parent->_parent = cur;
		if (_root == parent)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
				ppnode->_left = cur;
			else
				ppnode->_right = cur;
			cur->_parent = ppnode;
		}
	}

	void RotateR(Node* parent)
	{
		Node* cur = parent->_left;
		Node* curright = cur->_right;
		Node* ppnode = parent->_parent;
		parent->_left = curright;
		if (curright)
			curright->_parent = parent;
		cur->_right = parent;
		parent->_parent = cur;
		if (_root == parent)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
				ppnode->_left = cur;
			else
				ppnode->_right = cur;
			cur->_parent = ppnode;
		}
	}
private:
	Node* _root = nullptr;
};
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值