void Dispath_Floyd(MatGraph g, int A[][MAXV], int path[][MAXV])
{
int i, j, k, s;
int apath[MAXV], d; //最短路径(逆向) && 顶点个数
for (i = 0; i < g.n; i++)
for (j = 0; j < g.n; j++)
{
if (A[i][j] != INF && i != j) //i->j存在路径
{
cout << "从" << i << "到" << j << "的路径为:";
k = path[i][j];
d = 0; //路径上添加终点 从0开始
apath[d] = j;
while (k != -1 && k != i) //添加中间点
{
d++;
apath[d] = k;
k = path[i][k];
}
d++;
apath[d] = i; //路径上添加起点
cout << apath[d];
for (s = d - 1; s >= 0; s--)
cout << "," << apath[s];
cout << "\t路径长度为:" << A[i][j] << endl;
}
}
}
void Floyd(MatGraph g)
{
int A[MAXV][MAXV], path[MAXV][MAXV];
int i, j, k;
for (i = 0; i < g.n; i++)
for (j = 0; j < g.n; j++)
{
A[i][j] = g.edges[i][j]; // A记录边权
if (i != j && g.edges[i][j] != INF) // path记录k->j的最短(k,...,a,j) 则path(k-1)[k][j]=a
path[i][j] = i;
else
path[i][j] = -1;
}
// A表示经由该顶点的最短路径长度,可以为起点,可以为中转点
for (k = 0; k < g.n; k++)
{
for (i = 0; i < g.n; i++)
for (j = 0; j < g.n; j++)
if (A[i][j] > A[i][k] + A[k][j]) //修改最短路径
{
A[i][j] = A[i][k] + A[k][j];
path[i][j] = path[k][j];
}
}
Dispath_Floyd(g, A, path);
}