什么是二叉搜索树?
二叉搜索树又叫二叉排序树,空树是特殊的二叉搜索树。若左子树不为空,那么左子树节点上的值都小于根节点的值;若右子树不为空,那么右子树上所有节点的值都大于根节点的值;左右子树也是二叉搜索树。
二叉搜索树的性能分析
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树。
最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:log2N
最差情况下,二叉搜索树退化为单支树,其平均比较次数为:N/2
二叉搜索树节点的结构定义
template <class T>
struct BSTreeNodePlus {
BSTreeNodePlus<T>* _left;
BSTreeNodePlus<T>* _right;
T _data;
BSTreeNodePlus(const T& data = T())
:_data(data)
,_left(nullptr)
,_right(nullptr)
{ }
};
二叉搜索树的实现
template <class T>
class BSTreePlus {
typedef BSTreeNodePlus<T> Node;
public:
BSTreePlus()
:_root(nullptr)
{}
//插入一个节点
bool Insert(const T& x)
{
//判断树是否为空
if (_root == nullptr) {
_root = new Node(x);
return true;
}
//树不为空,要找合适的位置插入,从根节点开始匹配
Node* cur = _root;
//要记录每一步走的前一个位置
Node* parent = nullptr;
while (cur) {
parent = cur;
if (cur->_data > x) {
cur = cur->_left;
}
else if (cur->_data < x) {
cur = cur->_right;
}
else {
return false;
}
}
cur = new Node(x);
//插入元素
if (parent->_data < x)
parent->_right = cur;
else
parent->_left = cur;
return true;
}
bool Find(const T& x)
{
if (_root == nullptr)
return false;
Node* cur = _root;
while (cur) {
if (cur->_data > x)
cur = cur->_left;
else if (cur->_data < x)
cur = cur->_right;
else {
return true;
}
}
return false;
}
//删除一个节点 分两步
//第一步 :找到这个节点的位置
//第二步:删除 删除又分为三种情况
bool Erase(const T& x)
{
//如果为空树,直接返回
if (_root == nullptr)
return false;
//首先找到要删除的节点
Node* cur = _root;
Node* parent = nullptr;
while (cur) {
if (cur->_data > x) {
parent = cur;
cur = cur->_left;
}
else if (cur->_data < x) {
parent = cur;
cur = cur->_right;
}
else {
//找到了
//执行第二步:判断是那种情况
//左子树为空的情况
if (cur->_left == nullptr) {
if (parent == nullptr) {
_root = cur->_right;
}
else {
if (cur == parent->_right)
parent->_right = cur->_right;
else
parent->_right = cur->_right;
}
}
//右子树为空的情况
else if (cur->_right = nullptr) {
if (parent == nullptr) {
_root = cur->_left;
}
else {
if (cur == parent->_left)
parent->_left = cur->_left;
else
parent->_right = cur->_left;
}
}
//左右子树都不为空
//不能直接删除,找一个节点替代它,左子树最大,右子树最小
else {
//两种做法:找右子树的最小节点
//Node* del = nullptr;
//Node* reParent = cur;
//Node* replace = cur->_right;
//while (replace->_left) {
// reParent = replace;
// replace = replace->_left;
//}
////找到右子树最小的元素
////将这个元素直接赋值给要删除的元素
//cur->_data = replace->_data;
//del = replace;
//if (reParent->_left == replace)
// reParent->_left = replace->_right;
//else
// reParent->_right = replace->_right;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//找左子树的最大节点
Node* del = nullptr;
Node* reParent = cur;
Node* replace = cur->_left;
while (replace->_right) {
reParent = replace;
replace = replace->_right;
}
cur->_data = replace->_data;
del = replace;
if (replace == reParent->_right)
reParent->_right = replace->_left;
else
reParent->_left = replace->_left;
}
break;
}
}
return false;
}
//递归调用,提供接口
void InOrder()
{
_InOrder(_root);
}
void _InOrder(Node* root)
{
if (root) {
_InOrder(root->_left);
cout << root->_data << " ";
_InOrder(root->_right);
}
}
private:
Node* _root;
};
另一种写法:插入pair<K, V>,原理和上面一样
#pragma once
#include <iostream>
using namespace std;
template <class K, class V>
struct BSTreeNode {
pair<K, V>_kv;
BSTreeNode<K, V>* _left;
BSTreeNode<K, V>* _right;
BSTreeNode(const pair<K, V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
{}
};
template<class K, class V>
class BSTree {
typedef BSTreeNode<K, V> Node;
public:
BSTree()
:_root(nullptr)
{}
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr) {
_root = new Node(kv);
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur) {
parent = cur;
if (cur->_kv.first < kv.first) {
cur = cur->_right;
}
else if (cur->_kv.first > kv.first) {
cur = cur->_left;
}
else {
return false;
}
}
cur = new Node(kv);
if (parent->_kv.first < kv.first)
parent->_right = cur;
else
parent->_left = cur;
return true;
}
bool find(const K& key)
{
if (_root == nullptr) {
return false;
}
Node* cur = _root;
while (cur) {
if (cur->_kv.first > key)
cur = cur->_left;
else if (cur->_kv.first < key)
cur = cur->_right;
else
return true;
}
return false;
}
bool Earse(const K& key)
{
if (_root == nullptr)
return false;
Node* cur = _root;
Node* parent = nullptr;
while (cur) {
if (cur->_kv.first > key){
parent = cur;
cur = cur->_left;
}
else if (cur->_kv.first < key) {
parent = cur;
cur = cur->_right;
}
else {
Node* del = cur;
if (cur->_left = nullptr) {
if (parent == nullptr) {
_root = cur->_right;
}
else {
if (cur == parent->_left)
parent->_left = cur->_right;
else
parent->_right = cur->_right;
}
}
else if (cur->_right == nullptr) {
if (parent == nullptr) {
_root = cur->_left;
}
else {
if (cur == parent->_left)
parent->_left = cur->_left;
else
parent->_right = cur->_left;
}
}
//左右子树都不为空的情况
else {
Node* rParent = cur;
Node* replace = cur->_right;
//找右子树中最小的节点
while (replace->_left) {
rParent = replace;
replace = replace->_left;
}
//把代替节点赋值给要(原)删除的节点
cur->_kv = replace->_kv;
del = replace;
if (rParent->_left == del)
rParent->_left = del->_right;
else
rParent->_right = del->_right;
}
break;
}
}
return false;
}
void InOrder()
{
_InOrder(_root);
}
void _InOrder(Node* root)
{
if (root)
{
_InOrder(root->_left);
cout << root->_kv.first << " ";
_InOrder(root->_right);
}
}
private:
Node* _root;
};