【中科院1区】白鲸算法优化卷积神经网络融合注意力机制BWO-CNN-BiGRU-Attention超前24步多变量时间序列回归预测【含Matlab源码 M期】】

这篇文章介绍了使用霜冰算法优化的RIME-CNN-LSTM-Attention模型,该模型在Matlab中用于超前24步多变量预测,如风速、光伏功率等。文章详细描述了算法的创新搜索策略、优化参数和在多个领域的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab智能算法神经网络预测与分类仿真内容点击👇
Matlab神经网络预测与分类 (进阶版)
付费专栏Matlab智能算法神经网络预测与分类(中级版)
付费专栏Matlab智能算法神经网络预测与分类(初级版)

⛳️关注优快云海神之光,更多资源等你来!!

⛄一、霜冰算法优化卷积神经网络和长短期记忆网络融合多头自注意力机制RIME-CNN-LSTM-Attention超前24步多变量回归预测

霜冰优化算法是2023年发表于SCI、中科院二区Top期刊《Neurocomputing》上的新优化算法,现如今还未有相关的优化算法应用文献。RIME主要对霜冰的形成过程进行模拟,将其巧妙地应用于算法搜索领域。

①通过模拟软霜颗粒的运动,作者提出了一种全新的算法搜索策略,即软霜搜索策略。这个策略的灵感来自于对软霜颗粒在运动中的特性的模拟。

②同时,文中还模拟了硬霜颗粒之间的交叉行为,提出了硬霜穿刺机制,以更好地利用这一算法。这个穿刺机制通过模拟硬霜颗粒相互交叉的方式,为算法引入了一种新的优化手段。

③最后,在元启发式算法的选择机制方面进行了改进,引入了正向贪婪选择机制。通过结合软霜搜索策略、硬霜穿刺机制和正向贪婪选择机制构建RIME算法。

2 功能
2.1 多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。

2.2 通过霜冰优化算法优化学习率、卷积核大小、神经元个数3个关键参数,以最小MAPE为目标函数。

2.3 提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线。

2.4 提供MAPE、RMSE、MAE等计算结果展示。

3 适用领域
风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

4 输入数据集格式
前一天18个气象特征,采样时间为24小时,输出为第二天的24小时的功率出力,也就是18×24输入,1×24输出,一共有75个这样的样本。

⛄二、部分源代码

%% 清除内存、清除屏幕
clc
clear
%% 导入数据
data = xlsread(‘负荷数据.xlsx’);
rng(0)
%% 数据分析
daynum=30; %% 数据量较大,选取daynum天的数据
step=96; %% 多步预测
data =data(end-step*daynum+1:end,:);
Features = data(:😅‘; %% 特征输入: 输入影响因素特征和历史负荷数据
fnum=size(Features,1); %% 变量维度
W_data = data(:,end)’; %% 实际值输出:每天24小时,每小时4个采样点
%% 数据归一化
[features, ~] = mapminmax(Features, 0, 1);
[w_data, ps_output] = mapminmax(W_data, 0, 1);
%% 数据平铺为4-D
LP_Features = double(reshape(features,fnum,step,1,daynum)); %% 特征数据格式
LP_WindData = double(reshape(w_data,step,1,1,daynum)); %% 实际数据格式

%% 格式转换为cell
NumDays = daynum; %% 数据总天数为daynum天
for i=1:NumDays
FeaturesData{1,i} = LP_Features(:,:,1,i);
end

for i=1:NumDays
RealData{1,i} = LP_WindData(:,:,1,i);
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2023

2 参考文献
[1]赵侃,师芸,牛敏杰,王虎勤.基于改进麻雀搜索算法优化BP神经网络的PM2.5浓度预测[J].测绘通报. 2022(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值