【优化充电】基于matlab粒子群算法求解电动汽车群有序充电优化策略问题(3个充电站)【含Matlab源码 3233期】

文章探讨了如何使用粒子群算法优化电动汽车在居民小区的充电策略,通过分析用户行为、光伏出力和常规负荷,目标是平抑负荷波动和降低用户电费。算法考虑了用户需求和电网运行约束,提供了实际案例和部分Matlab源代码,展示了优化结果和算法性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab优化求解仿真内容点击👇
Matlab优化求解 (进阶版)
付费专栏Matlab优化求解(初级版)

⛳️关注优快云海神之光,更多资源等你来!!

一、粒子群算法电动汽车充电优化

1 电动汽车充电负荷估算
电动汽车的充电负荷主要与电动汽车起始充电时刻和充电时长相关,而起始充电时刻是由电动汽车用户的到家时间决定的,充电时长主要与电动汽车的行驶里程和充电倍率相关。

目前电动汽车还没有大规模运营, 只能通过统计燃油车的相关规律来代替电动汽车。对北京市某小区的私家车用户进行统计,回家时间主要分为三种: 一是正常朝九晚五的上班族,到家时间基本服从N(17.6,1.3)的正态分布, 这类用户占的比重最大;二是加班或者上半夜班的用户,到家时间基本服从N (0.7,1.6)的正态分布;三是少部分后半夜上班的人,到家时间基本服从N (7.8,1.22)的正态分布。三类用户所占的比例分别为0.68、0.24和0.08。
目前大部分私人用电动汽车的常规充电功率约为3 k W,根据以上相关信息,可以通过蒙特卡洛计算机仿真模拟方法,求出包含上述三类用户的居民小区平均每天一辆电动汽车的充电功率需求,如图1所示。
在这里插入图片描述
图1电动汽车一天平均充电功率需求
根据电动汽车平均一天的充电功率需求曲线,只要设置居民小区的电动汽车用户数量,就可以求出相应规模电动汽车的充电负荷曲线。

2 光伏出力曲线和常规用电负荷
固定铺设面积的光伏出力曲线主要与光照强度和温度相关,在实际条件下主要表现为天气变化和季节性变化。通过对某楼顶10 k W光伏发电系统功率输出数据进行统计和处理,可得不同季节该光伏发电系统满发的出力曲线,如图2所示。
在这里插入图片描述
图2四季光伏满发出力曲线

居民小区的负荷曲线主要和小区的用户规模相关,通过对北京市某小区居民楼的实际负荷数据进行统计,可得夏季和冬季每户平均家庭常规用电负荷曲线,如图3所示。
在这里插入图片描述
图3某小区每户平均家庭常规负荷曲线

2 电动汽车优化充电模型
2.1 目标函数

本文以平抑小区配电网的负荷波动和降低电动汽车用户充电电费为小区电动汽车充电优化的目标函数。以分钟为单位,将一天分为1 440 min。

1)以平抑负荷波动为目标函数
2)以用户电费最少为目标函数
针对上述两个目标,考虑两者目标函数的量纲不同,对每个目标函数进行规范化,采用线性加权和法将多目标优化问题转化为单目标优化问题,

2.2 约束条件
居民小区电动汽车充电优化调度的约束条件主要满足用户使用方面和电网运行的要求。对于用户使用方面的要求主要体现在用户开始充电时间和充电时长;对于电网运行的要求主要体现在总功率不能超过电网节点功率的限制。

1)用户需求约束
本约束条件的要求是要保证电动汽车在用户离开家的时间之前完成充电。

2)电网运行约束
本约束条件的要求是要保证小区在引入电动汽车充电负荷和光伏发电输出的情况下,电网节点的功率要维持在电网的合理安全范围之内。

2.3求解方法
居民小区电动汽车的优化充电问题是一个多维、多变量、多约束条件以及非线性的优化问题,线性规划等经典优化算法难以解决。这里采用粒子群优化算法,考虑到基本粒子群算法容易陷入局部最优的问题,本文将采用改进的自适应变异粒子群优化算法进行求解。

粒子群算法即模拟鸟群的捕食行为,通过鸟群的集体协作达到群体最优值,算法通过式(9) 和式(10)实现粒子位置和速度的更新
式中,ω为惯性权重,一般在0.1 ~0.9之间取值; d=1,2,…,D;i=1,2,…,n;k为当前迭代次数;Vid为粒子的速度;Xid为粒子的位置;c1和c2为非负的常数,称为加速度因子;r1和r2为0~1区间的随机数。

粒子群优化算法存在早熟收敛现象,需要对惯性权重和学习因子进行改进。对于惯性权重ω, 若ω在0.5~1之间随机取值,则实验表明该算法比线性递减策略准确度更高,收敛速度更快
对于学习因子c1和c2采用非线性反余弦加速, c1先大后小,而c2先小后大,能解决陷入局部最优的问题。基本思想是搜索初期粒子飞行主要参考本身的历史信息c1,到了后期则更加注重群体信息c2,即
根据上述分析,得到相应的优化算法的求解过程如下:

1)初始化粒子群中粒子的位置与速度,并根据约束条件对粒子位置进行修正。

2)计算粒子的适应度值(目标函数值)。

3)将个体最优值设置为当前位置,群体最优值gbest设置为初始群体中最佳粒子的位置。

4)再根据式(9)和式(10)更新粒子速度和相应位置。

5)计算粒子群粒子的适应度,更新并记录粒子最优位置和群体最优位置。

6)根据式(14)式(16)计算群体适应度方差σ2。

7)根据式(17)计算变异概率pm。

8)产生在0~1的随机数,如果该数小于变异概率pm,则执行式(18)的变异操作,并进行相应修正。

9)判断是否达到结束条件,如果为真,则停止计算,并输出优化的解;如果为假,返回步骤4)。

二、部分源代码

clear;
Max_Dt=50;%最大迭代次数200
D=72;%搜索空间维数(未知数个数)
N=100;%粒子个数100
w_max=0.9;
w_min=0.4;
v_max=2;
BTmax=300;
BTmin=0;
s=1;
% P_car=car_load(500);
load P_car
global grid_price
global electricity_demand
global load_33_sum
global position
global P_load
% P_load=P_load*0.8;
load P_load
load_33_sum=37150; % 33节点总负荷
load grid_price
electricity_demand=sum( P_car); %电动汽车充电需求

position=[15 18 30]; %前三个是电动汽车接入的位置

for i=1:N
for j=1:D
v(i,j)=0.0;
x(i,j)=BTmin+rand()*(BTmax-BTmin);
end

end

%计算各个粒子的适应度,并初始化Pi和Pg****************
for i=1:N
p(i)=fitness11(x(i,:));
y(i,:)=x(i,:);%每个粒子的个体寻优值
end
Pbest=fitness11(x(1,:));
pg=x(1,:);%Pg为全局最优
for i=2:N
if fitness11(x(i,:))<fitness11(pg)
Pbest=fitness11(x(i,:));
pg=x(i,:);%全局最优更新
end
end

%进入主循环*****************************************
for t=1:Max_Dt
for i=1:N
w=w_max-(w_max-w_min)*t/Max_Dt;%惯性权重更新
c1=(0.5-2.5)*t/Max_Dt+2.5; %认知
c2=(2.5-0.5)*t/Max_Dt+0.5; %社会认识

    v(i,:)=w*v(i,:)+c1*rand()*(y(i,:)-x(i,:))+c2*rand()*(pg-x(i,:));
    for m=1:D
        if(v(i,m)>v_max)
            v(i,m)=v_max;
        elseif(v(i,m)<-v_max)
            v(i,m)=-v_max;
        end
    end
    
    x(i,:)=x(i,:)+v(i,:);
    %对粒子边界处理*****************************
    for n=1:D
       if x(i,n)>BTmax
             x(i,n)=BTmax;
             v(i,n)=-v(i,n); 
       elseif x(i,n)<BTmin
             x(i,n)=BTmin;
             v(i,n)=-v(i,n); 
       end
    end
 
    %对粒子进行评价,寻找最优值******************
    if fitness11(x(i,:))<p(i)
        p(i)=fitness11(x(i,:));
        y(i,:)=x(i,:);
    end
    if p(i)<Pbest
        Pbest=p(i);
        pg=y(i,:);
        s=t;
    end
  
end
uu(t)= Pbest;

end

car_1=pg(1:24); % 提取三个充电站的充电计划
car_2=pg(25:48);
car_3=pg(49:72);

save puus uu;
save ppcars P_car;
save pcar1 car_1;
save pcar2 car_2;
save pcar3 car_3;

figure(‘position’,[100 50 1200 650],‘color’,[1 1 1]);
plot(uu);
title(‘目标函数迭代收敛图’);
xlabel(‘迭代次数’);
ylabel(‘目标函数大小’);
grid on

figure(‘position’,[100 50 1200 650],‘color’,[1 1 1]);
plot( car_1,‘-o’);
hold on
plot(P_car/3,‘-d’)
title(‘充电站1运行计划’);
xlabel(‘时刻’);
ylabel(‘功率/kw’);
grid on;
legend(‘无序充电’,‘有序充电’);

figure(‘position’,[100 50 1200 650],‘color’,[1 1 1]);
plot(car_2,‘-o’);
hold on
plot(P_car/3,‘-d’)
title(‘充电站2运行计划’);
xlabel(‘时刻’);
ylabel(‘功率/kw’);
grid on
legend(‘无序充电’,‘有序充电’)

figure(‘position’,[100 50 1200 650],‘color’,[1 1 1]);
plot( car_3,‘-o’);
hold on
plot(P_car/3,‘-d’)
title(‘充电站3运行计划’);
xlabel(‘时刻’);
ylabel(‘功率/kw’);
grid on
legend(‘无序充电’,‘有序充电’);

figure(‘position’,[100 50 1200 650],‘color’,[1 1 1]);

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]庞松岭,张超,张帝,刘汉炜,严乙桉.基于自适应变异粒子群算法的居民小区电动汽车优化充电策略[J].电气应用. 2015,34(20)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值