【VRP问题】基于matlab遗传算法求解多约束多无人机灾情应急救援路径规划问题【含Matlab源码 2715期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
Matlab路径规划(进阶版)
付费专栏Matlab路径规划(初级版)

⛳️关注优快云海神之光,更多资源等你来!!

⛄一、VRP简介

1 VRP基本原理
车辆路径规划问题(Vehicle Routing Problem,VRP)是运筹学里重要的研究问题之一。VRP关注有一个供货商与K个销售点的路径规划的情况,可以简述为:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。
VRP的图例如下所示:
在这里插入图片描述
2 问题属性与常见问题
车辆路径问题的特性比较复杂,总的来说包含四个方面的属性:
(1)地址特性包括:车场数目、需求类型、作业要求。
(2)车辆特性包括:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束。
(3)问题的其他特性。
(4)目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。

3 常见问题有以下几类:
(1)旅行商问题
(2)带容量约束的车辆路线问题(CVRP)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
该模型很难拓展到VRP的其他场景,并且不知道具体车辆的执行路径,因此对其模型继续改进。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(3)带时间窗的车辆路线问题
由于VRP问题的持续发展,考虑需求点对于车辆到达的时间有所要求之下,在车辆途程问题之中加入时窗的限制,便成为带时间窗车辆路径问题(VRP with Time Windows, VRPTW)。带时间窗车辆路径问题(VRPTW)是在VRP上加上了客户的被访问的时间窗约束。在VRPTW问题中,除了行驶成本之外, 成本函数还要包括由于早到某个客户而引起的等待时间和客户需要的服务时间。在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待,而迟到则拒收;另一种是软时窗(Soft Time Window),不一定要在时窗内到达,但是在时窗之外到达必须要处罚,以处罚替代等待与拒收是软时窗与硬时窗最大的不同。
在这里插入图片描述
在这里插入图片描述
模型2(参考2017 A generalized formulation for vehicle routing problems):
该模型为2维决策变量
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(4)收集和分发问题
(5)多车场车辆路线问题
参考(2005 lim,多车场车辆路径问题的遗传算法_邹彤, 1996 renaud)
在这里插入图片描述
由于车辆是同质的,这里的建模在变量中没有加入车辆的维度。
在这里插入图片描述
在这里插入图片描述
(6)优先约束车辆路线问题
(7)相容性约束车辆路线问题
(8)随机需求车辆路线问题

4 解决方案
(1)数学解析法
(2)人机交互法
(3)先分组再排路线法
(4)先排路线再分组法
(5)节省或插入法
(6)改善或交换法
(7)数学规划近似法
(8)启发式算法

5 VRP与VRPTW对比
在这里插入图片描述

⛄二、遗传算法简介

1 引言
在这里插入图片描述
在这里插入图片描述
2 遗传算法理论
2.1 遗传算法的生物学基础
在这里插入图片描述
在这里插入图片描述
2.2 遗传算法的理论基础
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.3 遗传算法的基本概念
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.4 标准的遗传算法
在这里插入图片描述
在这里插入图片描述
2.5 遗传算法的特点
在这里插入图片描述
在这里插入图片描述
2.6 遗传算法的改进方向
在这里插入图片描述
3 遗传算法流程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4 关键参数说明
在这里插入图片描述

⛄三、部分源代码

clc,clear
close all
tic
%% 目标函数:完成一次整体配送所需要的时间最短
%% 决策变量
% 物资集中地点
% 配送目标地点
% 各点之间路线情况
% 各点之间距离
% 各点当日物资需求量
% 配送车辆最大载重量

%% 约束条件
% 配送车辆的数量
% 配送车辆的行驶速度
% 无人机数量(每个物资集中点一台)
% 无人机最大载重量
% 无人机行驶速度
% 无人机最长飞行时间

%% 第一步:将数据进行处理,导入matlab
%每日物资需求量
MaterialNeed=[12 90 24 15 70 18 150 50 30 168 36 44 42 13]; % 前三问的数据

% 需要配送的地点
Position=[1:1:14];

% 需要配送的地点数量
PositionNum=length(Position);

% 应急物资集中地点
DistributionCenter=9;

% 物资集中地点数量
DistributionCenterNum=length(DistributionCenter);

% 点与点之间距离
Distance_1=[Inf Inf Inf Inf 54 Inf 55 Inf Inf Inf 26 Inf Inf Inf
Inf Inf 56 Inf 18 Inf Inf Inf Inf Inf Inf Inf Inf Inf
Inf 56 Inf Inf 44 Inf Inf Inf Inf Inf Inf Inf Inf Inf
Inf Inf Inf Inf Inf 28 Inf Inf Inf Inf Inf Inf Inf Inf
54 18 44 Inf Inf 51 34 56 48 Inf Inf Inf Inf Inf
Inf Inf Inf 28 51 Inf Inf Inf 27 42 Inf Inf Inf Inf
55 Inf Inf Inf 34 Inf Inf 36 Inf Inf Inf 38 Inf Inf
Inf Inf Inf Inf 56 Inf 36 Inf 29 Inf Inf 33 Inf Inf
Inf Inf Inf Inf 48 27 Inf 29 Inf 61 Inf 29 42 36
Inf Inf Inf Inf Inf 42 Inf Inf 61 Inf Inf Inf Inf 25
26 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 24 Inf Inf
Inf Inf Inf Inf Inf Inf 38 33 29 Inf 24 Inf Inf Inf
Inf Inf Inf Inf Inf Inf Inf Inf 42 Inf Inf Inf Inf 47
Inf Inf Inf Inf Inf Inf Inf Inf 36 25 Inf Inf 47 Inf]; % 点与点的距离(不包括无人机路径)

Distance_2=[Inf 20 Inf Inf 54 Inf 55 Inf Inf Inf 26 Inf Inf Inf
20 Inf 56 Inf 18 Inf Inf Inf Inf Inf Inf Inf Inf Inf
Inf 56 Inf 15 44 18 Inf Inf Inf Inf Inf Inf Inf Inf
Inf Inf 15 Inf Inf 28 Inf Inf Inf 26 Inf Inf Inf Inf
54 18 44 Inf Inf 51 34 56 48 Inf Inf Inf Inf Inf
Inf Inf 18 28 51 Inf Inf Inf 27 42 Inf Inf Inf Inf
55 Inf Inf Inf 34 Inf Inf 36 Inf Inf 26 38 Inf Inf
Inf Inf Inf Inf 56 Inf 36 Inf 29 Inf Inf 33 25 Inf
Inf Inf Inf Inf 48 27 Inf 29 Inf 61 Inf 29 42 36
Inf Inf Inf 26 Inf 42 Inf Inf 61 Inf Inf Inf Inf 25
26 Inf Inf Inf Inf Inf 26 Inf Inf Inf Inf 24 Inf Inf
Inf Inf Inf Inf Inf Inf 38 33 29 Inf 24 Inf 34 Inf
Inf Inf Inf Inf Inf Inf Inf 25 42 Inf Inf 34 Inf 47
Inf Inf Inf Inf Inf Inf Inf Inf 36 25 Inf Inf 47 Inf]; % 增加的无人机的路径,也即无人机可以飞行的路径

% 配送车辆最大载重量
VehicleCapacity=1000; % 问题3、4中汽车载重能力
% 配送车辆数量
VehicleNum=DistributionCenterNum;
% 配送车辆行驶速度km/h
VehicleSpeed=50;
% 无人机最大载重量,无人机unmanned aerial vehicles,UAV
UAVCapacity=50;
% 无人机数量
UAVNum=VehicleNum;
% 无人机行驶速度km/h
UAVSpeed=75;
% 无人机最长飞行时间h
UAVEnduranceTime=70/60;
% 无人机最大航程km
UAVEnduranceDistance=UAVSpeed*UAVEnduranceTime;
% 加载已经处理好的数据
load(‘data_of_2022527B_ques3.mat’)

%% 第二步:先计算两两地点之间的最短距离、最短路径和最短时间
% 配送车辆可行驶路径
distance_min_1=[];
path_min_1={};
time_min_1=[];
for i=1:PositionNum
for j=1:PositionNum
[dist,path]=myfloyd(Distance_1,i,j);
distance_min_1(i,j)=dist;
time_min_1(i,j)=dist/VehicleSpeed;
if j>=i
path_min_1{i,j}=path;
path_min_1{j,i}=flip(path);
end
end
end

⛄四、运行结果

在这里插入图片描述
在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]马硕.基于非支配排序遗传算法的多目标车辆路径规划研究[J].大连海事大学

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值