💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab语音处理仿真内容点击👇
①Matlab语音处理 (进阶版)
②付费专栏Matlab语音处理(初级版)
⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!
⛄一、匹配滤波器简介
匹配滤波器是一种非常重要的滤波器,广泛应用与通信、雷达等系统中。匹配滤波器的推导数学公式看起来很负责,在通信系统、雷达系统、随机信号处理等很多教科书中都有详细的推导过程。最开始的时候,顺着推导的过程,基本也能推导下来,但对其内在的涵义却无半点认识,可以说完全淹没在公式推导的海洋了。
张直中老师可以说是新中国雷达事业的开拓者之一。就目前的阅读范围来看,张老师在其早期的著作《雷达信号的选择与处理》一书中对匹配滤波器的讲解最为透彻。说句题外话,这本1979年出版的老书,充满了哲学思辨的色彩,让人读起来满口余香,也能让我们充分领略老一辈科学家宽广深厚的学术素养。
所谓的最优滤波器,实际上都是在某个准则下的最优。匹配滤波器对应的最优的准则是输出信噪比(SNR)最大。而且还有一个前提条件是在白噪声背景下。推导很多地方都有,最后的结果就是匹配滤波器的表达式为:
H(f)=S*(f)
也即是说,匹配滤波器的频率响应是输入信号频率响应的共轭。这看起来又很简单,那么如何从物理直观上理解匹配滤波器呢?
一方面,从幅频特性来看,匹配滤波器和输入信号的幅频特性完全一样。这也就是说,在信号越强的频率点,滤波器的放大倍数也越大;在信号越弱的频率点,滤波器的放大倍数也越小。这就是信号处理中的“马太效应”。也就是说,匹配滤波器是让信号尽可能通过,而不管噪声的特性。因为匹配滤波器的一个前提是白噪声,也即是噪声的功率谱是平坦的,在各个频率点都一样。因此,这种情况下,让信号尽可能通过,实际上也隐含着尽量减少噪声的通过。这不正是使得输出的信噪比最大吗?
另外一方面,从相频特性上看,匹配滤波器的相频特性和输入信号正好完全相反。这样,通过匹配滤波器后,信号的相位为0,正好能实现信号时域上的相干叠加。而噪声的相位是随机的,只能实现非相干叠加。这样在时域上保证了输出信噪比的最大。
实际上,在信号与系统的幅频特性与相频特性中,幅频特性更多地表征了频率特性,而相频特性更多地表征了时间特性。匹配滤波器无论是从时域还是从频域,都充分保证了信号尽可能大地通过,噪声尽可能小地通过,因此能获得最大信噪比的输出。
实际上,匹配滤波器由其命名即可知道其鲜明的特点,那就是这个滤波器是匹配输入信号的。一旦输入信号发生了变化,原来的匹配滤波器就再也不能称为匹配滤波器了。由此,我们很容易联想到相关这个概念,相关的物理意义就是比较两个信号的相似程度。如果两个信号完全一样,不就是匹配了吗?事实上,匹配滤波器的另外一个名字就是相关接收,两者表征的意义是完全一样的。只是匹配滤波器着重在频域的表述,而相关接收则着重在时域的表述。
⛄二、部分源代码
clear all;close all;clc;
[s ,fs] =audioread(‘test.wav’);
N = length(s) - 1 ;
n1=0:1:N; % 实际采样用 n1=0:1:N-1, 这里为了好看在最后多采样了下一个周期的第一个点
figure(1)
subplot(3,1,1),
plot(n1,s);
title(‘原始信号’);
grid;
y=s+0.03*randn(N+1,1); % n1=0:1:N-1时,采用randn(N,1)
subplot(3,1,2),
plot(n1,y);
title(‘含噪声信号’);
grid;
% h0=conj(fliplr(s));
h0=conj(flipud(s));
y0=conv(y,h0);
subplot(3,1,3),
tt = 0:length(y0)-1;
plot(tt, y0);
title(‘滤波后信号’);
grid
figure(2)
subplot(2,1,1);
plot(s);
title(‘s’);
subplot(2,1,2);
plot(h0);
title(‘h0’);
% 计算DTW
result = CaculateDtw(y0);
figure(3)
subplot(3,1,1);
fft_data_s= abs(fft(s));
plot(n1,fft_data_s);
title(‘original signal FFT’);
subplot(3,1,2),
fft_data_y= abs(fft(y));
plot(n1,fft_data_y);
title(‘original signal added noise FFT’);
subplot(3,1,3),
fft_data_y0= abs(fft(y0));
plot(tt,fft_data_y0);
title(‘original signal added noise after conv FFT’);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合