【语音识别】基于matlab GUI DTW 0-9数字语音识别(带面板)【含Matlab源码 2543期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab语音处理仿真内容点击👇
Matlab语音处理 (进阶版)
付费专栏Matlab语音处理(初级版)

⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!

⛄一、DTW简介(附课程作业报告)

一个应用DTW的说话人识别系统如图8-4所示。它是与文本有关的说话人确认系统。它采用的识别特征是BP FG(附听觉特征处理) , 匹配时采用DTW技术。其特点为:①在结构上基本沿用语音识别的系统。②利用使用过程中的数据修正原模板,即当在某次使用过程
中某说话人被正确确认时使用此时的输人特征对原模板作加权修改(一般用1/10加权)。
这样可使模板逐次趋于完善。
在这里插入图片描述
采样时间间隔为2.5ms,所存的字音模板数为15x16,即15个说话人各自的16个规定音。建立模板时,每个说话人对各字音各发音10次再经适当平均得到上述的各模板。在确认过程中,要求待确认者在他已知的116个字音中任选2~4个。先任选2个字,将2个字所得的“计分”(距离的倒数)相加,若已超过判决逻辑中所设定的阈值则予以肯定。否则,令待确认者另选16个字中其它字音并将计分加权累计,直到共发4个字音。若仍未达到阈值,则给以拒绝。
这里提供一个典型的实验结果:对于1732个真的待确认者,经此系统的错误拒绝率为
0.6%;对于630个假的待证实者,错误接受率为0.3%。当然,适当改变阈值可以调整这
两种比率。

⛄二、部分源代码

function varargout = wjshibiejiemian(varargin)
% WJSHIBIEJIEMIAN M-file for wjshibiejiemian.fig
% WJSHIBIEJIEMIAN, by itself, creates a new WJSHIBIEJIEMIAN or raises the existing
% singleton*.
%
% H = WJSHIBIEJIEMIAN returns the handle to a new WJSHIBIEJIEMIAN or the handle to
% the existing singleton*.
%
% WJSHIBIEJIEMIAN(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in WJSHIBIEJIEMIAN.M with the given input arguments.
%
% WJSHIBIEJIEMIAN(‘Property’,‘Value’,…) creates a new WJSHIBIEJIEMIAN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before wjshibiejiemian_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to wjshibiejiemian_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help wjshibiejiemian

% Last Modified by GUIDE v2.5 26-May-2010 19:17:53

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @wjshibiejiemian_OpeningFcn, …
‘gui_OutputFcn’, @wjshibiejiemian_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before wjshibiejiemian is made visible.
function wjshibiejiemian_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to wjshibiejiemian (see VARARGIN)

% Choose default command line output for wjshibiejiemian
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes wjshibiejiemian wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = wjshibiejiemian_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in zryunyin.
function zryunyin_Callback(hObject, eventdata, handles)
% hObject handle to zryunyin (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
loadsp;

% — Executes on button press in wjshibie.
function wjshibie_Callback(hObject, eventdata, handles)
% hObject handle to wjshibie (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
wenjiansb;

% — Executes on button press in fanhui.
function fanhui_Callback(hObject, eventdata, handles)
% hObject handle to fanhui (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
DTWjiemian;
close wjshibiejiemian;

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值